OSCEai : Apprentissage interactif personnalisé pour la formation médicale de premier cycle

Auteurs-es

  • Eddie Guo University of Calgary
  • Rashi Ramchandani University of Ottawa https://orcid.org/0000-0002-6144-6423
  • Ye-Jean Park University of Toronto
  • Mehul Gupta University of Calgary

DOI :

https://doi.org/10.36834/cmej.79220

Résumé

Contexte : Cette étude vise à évaluer l'efficacité de l'OSCEai, une nouvelle plateforme basée sur un modèle de langage étendu qui simule des rencontres cliniques, pour améliorer l'enseignement médical de premier cycle.

Méthodes : Une application web, OSCEai, a été créée pour faire le lien entre l'apprentissage théorique et l'apprentissage pratique. Après utilisation, les étudiants en médecine de la promotion 2026 de l'Université de Calgary ont répondu à une enquête anonyme sur la facilité d'utilisation, l'utilité et leur expérience globale de l'OSCEai.

Résultats : La plateforme a été très appréciée pour sa capacité à fournir des données à la demande (33/37), à soutenir l'apprentissage à son propre rythme (30/37) et à offrir des interactions réalistes avec des patients (29/37). La facilité d'utilisation et la qualité du contenu médical ont été évaluées respectivement à 4,73 (IC 95 % : 4,58 à 4,88) et 4,70 (IC 95 % : 4,55 à 4,86) sur 5. Certains participants (8/37) ont indiqué que quelques cas n'étaient pas représentatifs et qu'il fallait apporter des éclaircissements en ce qui a trait aux fonctionnalités de l'application. Malgré ces limites, la plateforme OSCEai a été favorablement comparée aux méthodes d'enseignement traditionnelles, avec une note de réception globale de 4,62 (IC 95 % : 4,46 à 4,79) sur 5.

Interprétation : La plateforme OSCEai comble une lacune dans la formation médicale grâce à sa conception évolutive, interactive et personnalisée. Les résultats suggèrent que l'intégration de technologies, comme OSCEai, dans les programmes d'études médicales peut améliorer la qualité et l'efficacité de l'enseignement médical.

Références

Servant-Miklos VFC. Fifty years on: a retrospective on the world’s first problem-based learning programme at McMaster University Medical School. Health Prof Educ. 2019 Mar;5(1):3–12. http://dx.doi.org/10.1016/j.hpe.2018.04.002 DOI: https://doi.org/10.1016/j.hpe.2018.04.002

Neville AJ, Norman GR. PBL in the undergraduate MD program at McMaster University: three iterations in three decades: Acad Med. 2007 Apr;82(4):370–4. http://dx.doi.org/10.1097/ACM.0b013e318033385d DOI: https://doi.org/10.1097/ACM.0b013e318033385d

Spaulding WB. The undergraduate medical curriculum (1969 model): McMaster university. Can Med Assoc J. 1969 Apr 12;100(14):659–64. https://www.ncbi.nlm.nih.gov/pubmed/5776441

Sanson-Fisher R, Hobden B, Carey M, Mackenzie L, Hyde L, Shepherd J. Interactional skills training in undergraduate medical education: ten principles for guiding future research. BMC Med Educ. 2019 May 15;19(1):144. http://dx.doi.org/10.1186/s12909-019-1566-2 DOI: https://doi.org/10.1186/s12909-019-1566-2

Kurtz SM, Silverman JD. The Calgary-Cambridge Referenced Observation Guides: an aid to defining the curriculum and organizing the teaching in communication training programmes. Med Educ. 1996 Mar;30(2):83–9. http://dx.doi.org/10.1111/j.1365-2923.1996.tb00724.x DOI: https://doi.org/10.1111/j.1365-2923.1996.tb00724.x

Gordon MS, Ewy GA, DeLeon AC Jr, et al. “Harvey,” the cardiology patient simulator: pilot studies on teaching effectiveness. Am J Cardiol. 1980 Apr;45(4):791–6. http://dx.doi.org/10.1016/0002-9149(80)90123-x DOI: https://doi.org/10.1016/0002-9149(80)90123-X

Wang S, Ren X, Ye J, Wang W, Huang H, Qin C. Exploration of simulation-based medical education for undergraduate students. Med. 2021 May 21;100(20):e25982. http://dx.doi.org/10.1097/MD.0000000000025982 DOI: https://doi.org/10.1097/MD.0000000000025982

Al-Elq A. Simulation-based medical teaching and learning. J Fam Community Med. 2010;17(1):35. http://dx.doi.org/10.4103/1319-1683.68787 DOI: https://doi.org/10.4103/1319-1683.68787

Kaplovitch E, Otremba M, Morgan M, Devine LA. Cost-efficient medical education: an innovative approach to creating educational products. J Grad Med Educ. 2019 Dec 1;11(6):713–6. http://dx.doi.org/10.4300/JGME-D-19-00155.1 DOI: https://doi.org/10.4300/JGME-D-19-00155.1

Wynter L, Burgess A, Kalman E, Heron JE, Bleasel J. Medical students: what educational resources are they using? BMC Med Educ. 2019 Dec;19(1):36. http://dx.doi.org/10.1186/s12909-019-1462-9 DOI: https://doi.org/10.1186/s12909-019-1462-9

Abd-Alrazaq A, AlSaad R, Alhuwail D, et al. large language models in medical education: opportunities, challenges, and future directions. JMIR Med Educ. 2023 Jun 1;9:e48291. http://dx.doi.org/10.2196/48291 DOI: https://doi.org/10.2196/48291

Clusmann J, Kolbinger FR, Muti HS, et al. The future landscape of large language models in medicine. Commun Med (Lond). 2023 Oct 10;3(1):141. http://dx.doi.org/10.1038/s43856-023-00370-1 DOI: https://doi.org/10.1038/s43856-023-00370-1

Wu S, Irsoy O, Lu S, et al. BloombergGPT: a large language model for finance. arXiv [cs.LG]. 2023. http://arxiv.org/abs/2303.17564

Guo E, Gupta M, Deng J, Park Y-J, Paget M, Naugler C. Automated paper screening for clinical reviews using large language models: data analysis study. J Med Internet Res. 2024 Jan 12;26:e48996. http://dx.doi.org/10.2196/48996 DOI: https://doi.org/10.2196/48996

Unlu O, Shin J, Mailly CJ, et al. Retrieval-augmented generation–enabled GPT-4 for clinical trial screening. NEJM AI. 2024 Jun 17; http://dx.doi.org/10.1056/aioa2400181 DOI: https://doi.org/10.1056/AIoa2400181

Katz DM, Bommarito MJ, Gao S, Arredondo P. GPT-4 passes the bar exam. Philos Trans A Math Phys Eng Sci. 2024 Apr 15;382(2270):20230254. http://dx.doi.org/10.1098/rsta.2023.0254 DOI: https://doi.org/10.1098/rsta.2023.0254

Radford, Alec; Narasimhan, Karthik; Salimans, Tim; Sutskever, Ilya. Improving language understanding by generative pre-training. 2018.

Biri SK, Kumar S, Panigrahi M, Mondal S, Behera JK, Mondal H. Assessing the utilization of large language models in medical education: insights from undergraduate medical students. Cureus. 2023 Oct;15(10):e47468. http://dx.doi.org/10.7759/cureus.47468 DOI: https://doi.org/10.7759/cureus.47468

Safranek CW, Sidamon-Eristoff AE, Gilson A, Chartash D. The role of large language models in medical education: applications and implications. JMIR Med Educ. 2023 Aug 14;9:e50945. http://dx.doi.org/10.2196/50945 DOI: https://doi.org/10.2196/50945

Divito CB, Katchikian BM, Gruenwald JE, Burgoon JM. The tools of the future are the challenges of today: the use of ChatGPT in problem-based learning medical education. Med Teach. 2024 Mar;46(3):320–2. http://dx.doi.org/10.1080/0142159X.2023.2290997 DOI: https://doi.org/10.1080/0142159X.2023.2290997

Cumming School of Medicine. Re-Imagining Medical Education (RIME) 2024. Available from https://cumming.ucalgary.ca/mdprogram/current-students/pre-clerkship-year-1-2/re-imagining-medical-education-rime.

Egli A. ChatGPT, GPT-4, and other large language models: the next revolution for clinical microbiology? Clin Infect Dis. 2023 Nov 11;77(9):1322–8. http://dx.doi.org/10.1093/cid/ciad407 DOI: https://doi.org/10.1093/cid/ciad407

Zayyan M. Objective structured clinical examination: the assessment of choice. Oman Med J. 2011 Jul;26(4):219–22. http://dx.doi.org/10.5001/omj.2011.55 DOI: https://doi.org/10.5001/omj.2011.55

meta-llama/Meta-Llama-3-70B · Hugging Face. Available from https://huggingface.co/meta-llama/Meta-Llama-3-70B [Accessed on Jun 23, 2024].

Eysenbach G. Improving the quality of Web surveys: the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). J Med Internet Res. 2004 Sep 29;6(3):e34. http://dx.doi.org/10.2196/jmir.6.3.e34 DOI: https://doi.org/10.2196/jmir.6.3.e34

Kulasegaram KM, Martimianakis MA, Mylopoulos M, Whitehead CR, Woods NN. Cognition before curriculum: rethinking the integration of basic science and clinical learning. Acad Med. 2013 Oct;88(10):1578–85. http://dx.doi.org/10.1097/ACM.0b013e3182a45def DOI: https://doi.org/10.1097/ACM.0b013e3182a45def

Bosse HM, Nickel M, Huwendiek S, Schultz JH, Nikendei C. Cost-effectiveness of peer role play and standardized patients in undergraduate communication training. BMC Med Educ. 2015 Oct 24;15:183. http://dx.doi.org/10.1186/s12909-015-0468-1 DOI: https://doi.org/10.1186/s12909-015-0468-1

Cook DA, Hatala R, Brydges R, et al. Technology-enhanced simulation for health professions education: a systematic review and meta-analysis. JAMA. 2011 Sep 7;306(9):978–88. http://dx.doi.org/10.1001/jama.2011.1234 DOI: https://doi.org/10.1001/jama.2011.1234

Walsh K, Levin H, Jaye P, Gazzard J. Cost analyses approaches in medical education: there are no simple solutions. Med Educ. 2013 Oct;47(10):962–8. http://dx.doi.org/10.1111/medu.12214 DOI: https://doi.org/10.1111/medu.12214

Emanuel EJ. The inevitable reimagining of medical education. JAMA 2020 Mar 24;323(12):1127. http://dx.doi.org/10.1001/jama.2020.1227 DOI: https://doi.org/10.1001/jama.2020.1227

McGaghie WC, Issenberg SB, Cohen ER, Barsuk JH, Wayne DB. Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. Acad Med. 2011 Jun;86(6):706–11. http://dx.doi.org/10.1097/ACM.0b013e318217e119 DOI: https://doi.org/10.1097/ACM.0b013e318217e119

Kneebone RL, Scott W, Darzi A, Horrocks M. Simulation and clinical practice: strengthening the relationship. Med Educ. 2004 Oct;38(10):1095–102. http://dx.doi.org/10.1111/j.1365-2929.2004.01959.x DOI: https://doi.org/10.1111/j.1365-2929.2004.01959.x

Skelly K, Kim P, Rosenbaum M, Wilbur J. Goldilocks and entrustment: finding the amount of learner autonomy that’s just right. MedEdPORTAL. 2020 Oct 13;16:10987. http://dx.doi.org/10.15766/mep_2374-8265.10987 DOI: https://doi.org/10.15766/mep_2374-8265.10987

Conner SM, Choi N, Fuller J, et al. Trainee autonomy and supervision in the modern clinical learning environment: a mixed-methods study of faculty and trainee perspectives. Res Sq. 2023 Jun 6;rs.3.rs-2982838. http://dx.doi.org/10.21203/rs.3.rs-2982838/v1 DOI: https://doi.org/10.21203/rs.3.rs-2982838/v1

Kamphuis C, Barsom E, Schijven M, Christoph N. Augmented reality in medical education? Perspect Med Educ. 2014 Sep;3(4):300–11. http://dx.doi.org/10.1007/s40037-013-0107-7 DOI: https://doi.org/10.1007/S40037-013-0107-7

Thistlethwaite J. Interprofessional education: a review of context, learning and the research agenda. Med Educ. 2012 Jan;46(1):58–70. http://dx.doi.org/10.1111/j.1365-2923.2011.04143.x DOI: https://doi.org/10.1111/j.1365-2923.2011.04143.x

Téléchargements

Publié-e

2024-08-06

Comment citer

1.
Guo E, Ramchandani R, Park Y-J, Gupta M. OSCEai : Apprentissage interactif personnalisé pour la formation médicale de premier cycle. Can. Med. Ed. J [Internet]. 6 août 2024 [cité 18 déc. 2024];. Disponible à: https://journalhosting.ucalgary.ca/index.php/cmej/article/view/79220

Numéro

Rubrique

Recherche originale