OSCEai : Apprentissage interactif personnalisé pour la formation médicale de premier cycle

Auteurs-es

  • Eddie Guo University of Calgary
  • Rashi Ramchandani University of Ottawa https://orcid.org/0000-0002-6144-6423
  • Ye-Jean Park University of Toronto
  • Mehul Gupta University of Calgary

DOI :

https://doi.org/10.36834/cmej.79220

Résumé

Contexte : Cette étude vise à évaluer l'efficacité de l'OSCEai, une nouvelle plateforme basée sur un modèle de langage étendu qui simule des rencontres cliniques, pour améliorer l'enseignement médical de premier cycle.

Méthodes : Une application web, OSCEai, a été créée pour faire le lien entre l'apprentissage théorique et l'apprentissage pratique. Après utilisation, les étudiants en médecine de la promotion 2026 de l'Université de Calgary ont répondu à une enquête anonyme sur la facilité d'utilisation, l'utilité et leur expérience globale de l'OSCEai.

Résultats : La plateforme a été très appréciée pour sa capacité à fournir des données à la demande (33/37), à soutenir l'apprentissage à son propre rythme (30/37) et à offrir des interactions réalistes avec des patients (29/37). La facilité d'utilisation et la qualité du contenu médical ont été évaluées respectivement à 4,73 (IC 95 % : 4,58 à 4,88) et 4,70 (IC 95 % : 4,55 à 4,86) sur 5. Certains participants (8/37) ont indiqué que quelques cas n'étaient pas représentatifs et qu'il fallait apporter des éclaircissements en ce qui a trait aux fonctionnalités de l'application. Malgré ces limites, la plateforme OSCEai a été favorablement comparée aux méthodes d'enseignement traditionnelles, avec une note de réception globale de 4,62 (IC 95 % : 4,46 à 4,79) sur 5.

Interprétation : La plateforme OSCEai comble une lacune dans la formation médicale grâce à sa conception évolutive, interactive et personnalisée. Les résultats suggèrent que l'intégration de technologies, comme OSCEai, dans les programmes d'études médicales peut améliorer la qualité et l'efficacité de l'enseignement médical.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

Servant-Miklos VFC. Fifty years on: a retrospective on the world’s first problem-based learning programme at McMaster University Medical School. Health Prof Educ. 2019 Mar;5(1):3–12. http://dx.doi.org/10.1016/j.hpe.2018.04.002 DOI: https://doi.org/10.1016/j.hpe.2018.04.002

Neville AJ, Norman GR. PBL in the undergraduate MD program at McMaster University: three iterations in three decades: Acad Med. 2007 Apr;82(4):370–4. http://dx.doi.org/10.1097/ACM.0b013e318033385d DOI: https://doi.org/10.1097/ACM.0b013e318033385d

Spaulding WB. The undergraduate medical curriculum (1969 model): McMaster university. Can Med Assoc J. 1969 Apr 12;100(14):659–64. https://www.ncbi.nlm.nih.gov/pubmed/5776441

Sanson-Fisher R, Hobden B, Carey M, Mackenzie L, Hyde L, Shepherd J. Interactional skills training in undergraduate medical education: ten principles for guiding future research. BMC Med Educ. 2019 May 15;19(1):144. http://dx.doi.org/10.1186/s12909-019-1566-2 DOI: https://doi.org/10.1186/s12909-019-1566-2

Kurtz SM, Silverman JD. The Calgary-Cambridge Referenced Observation Guides: an aid to defining the curriculum and organizing the teaching in communication training programmes. Med Educ. 1996 Mar;30(2):83–9. http://dx.doi.org/10.1111/j.1365-2923.1996.tb00724.x DOI: https://doi.org/10.1111/j.1365-2923.1996.tb00724.x

Gordon MS, Ewy GA, DeLeon AC Jr, et al. “Harvey,” the cardiology patient simulator: pilot studies on teaching effectiveness. Am J Cardiol. 1980 Apr;45(4):791–6. http://dx.doi.org/10.1016/0002-9149(80)90123-x DOI: https://doi.org/10.1016/0002-9149(80)90123-X

Wang S, Ren X, Ye J, Wang W, Huang H, Qin C. Exploration of simulation-based medical education for undergraduate students. Med. 2021 May 21;100(20):e25982. http://dx.doi.org/10.1097/MD.0000000000025982 DOI: https://doi.org/10.1097/MD.0000000000025982

Al-Elq A. Simulation-based medical teaching and learning. J Fam Community Med. 2010;17(1):35. http://dx.doi.org/10.4103/1319-1683.68787 DOI: https://doi.org/10.4103/1319-1683.68787

Kaplovitch E, Otremba M, Morgan M, Devine LA. Cost-efficient medical education: an innovative approach to creating educational products. J Grad Med Educ. 2019 Dec 1;11(6):713–6. http://dx.doi.org/10.4300/JGME-D-19-00155.1 DOI: https://doi.org/10.4300/JGME-D-19-00155.1

Wynter L, Burgess A, Kalman E, Heron JE, Bleasel J. Medical students: what educational resources are they using? BMC Med Educ. 2019 Dec;19(1):36. http://dx.doi.org/10.1186/s12909-019-1462-9 DOI: https://doi.org/10.1186/s12909-019-1462-9

Abd-Alrazaq A, AlSaad R, Alhuwail D, et al. large language models in medical education: opportunities, challenges, and future directions. JMIR Med Educ. 2023 Jun 1;9:e48291. http://dx.doi.org/10.2196/48291 DOI: https://doi.org/10.2196/48291

Clusmann J, Kolbinger FR, Muti HS, et al. The future landscape of large language models in medicine. Commun Med (Lond). 2023 Oct 10;3(1):141. http://dx.doi.org/10.1038/s43856-023-00370-1 DOI: https://doi.org/10.1038/s43856-023-00370-1

Wu S, Irsoy O, Lu S, et al. BloombergGPT: a large language model for finance. arXiv [cs.LG]. 2023. http://arxiv.org/abs/2303.17564

Guo E, Gupta M, Deng J, Park Y-J, Paget M, Naugler C. Automated paper screening for clinical reviews using large language models: data analysis study. J Med Internet Res. 2024 Jan 12;26:e48996. http://dx.doi.org/10.2196/48996 DOI: https://doi.org/10.2196/48996

Unlu O, Shin J, Mailly CJ, et al. Retrieval-augmented generation–enabled GPT-4 for clinical trial screening. NEJM AI. 2024 Jun 17; http://dx.doi.org/10.1056/aioa2400181 DOI: https://doi.org/10.1056/AIoa2400181

Katz DM, Bommarito MJ, Gao S, Arredondo P. GPT-4 passes the bar exam. Philos Trans A Math Phys Eng Sci. 2024 Apr 15;382(2270):20230254. http://dx.doi.org/10.1098/rsta.2023.0254 DOI: https://doi.org/10.1098/rsta.2023.0254

Radford, Alec; Narasimhan, Karthik; Salimans, Tim; Sutskever, Ilya. Improving language understanding by generative pre-training. 2018.

Biri SK, Kumar S, Panigrahi M, Mondal S, Behera JK, Mondal H. Assessing the utilization of large language models in medical education: insights from undergraduate medical students. Cureus. 2023 Oct;15(10):e47468. http://dx.doi.org/10.7759/cureus.47468 DOI: https://doi.org/10.7759/cureus.47468

Safranek CW, Sidamon-Eristoff AE, Gilson A, Chartash D. The role of large language models in medical education: applications and implications. JMIR Med Educ. 2023 Aug 14;9:e50945. http://dx.doi.org/10.2196/50945 DOI: https://doi.org/10.2196/50945

Divito CB, Katchikian BM, Gruenwald JE, Burgoon JM. The tools of the future are the challenges of today: the use of ChatGPT in problem-based learning medical education. Med Teach. 2024 Mar;46(3):320–2. http://dx.doi.org/10.1080/0142159X.2023.2290997 DOI: https://doi.org/10.1080/0142159X.2023.2290997

Cumming School of Medicine. Re-Imagining Medical Education (RIME) 2024. Available from https://cumming.ucalgary.ca/mdprogram/current-students/pre-clerkship-year-1-2/re-imagining-medical-education-rime.

Egli A. ChatGPT, GPT-4, and other large language models: the next revolution for clinical microbiology? Clin Infect Dis. 2023 Nov 11;77(9):1322–8. http://dx.doi.org/10.1093/cid/ciad407 DOI: https://doi.org/10.1093/cid/ciad407

Zayyan M. Objective structured clinical examination: the assessment of choice. Oman Med J. 2011 Jul;26(4):219–22. http://dx.doi.org/10.5001/omj.2011.55 DOI: https://doi.org/10.5001/omj.2011.55

meta-llama/Meta-Llama-3-70B · Hugging Face. Available from https://huggingface.co/meta-llama/Meta-Llama-3-70B [Accessed on Jun 23, 2024].

Eysenbach G. Improving the quality of Web surveys: the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). J Med Internet Res. 2004 Sep 29;6(3):e34. http://dx.doi.org/10.2196/jmir.6.3.e34 DOI: https://doi.org/10.2196/jmir.6.3.e34

Kulasegaram KM, Martimianakis MA, Mylopoulos M, Whitehead CR, Woods NN. Cognition before curriculum: rethinking the integration of basic science and clinical learning. Acad Med. 2013 Oct;88(10):1578–85. http://dx.doi.org/10.1097/ACM.0b013e3182a45def DOI: https://doi.org/10.1097/ACM.0b013e3182a45def

Bosse HM, Nickel M, Huwendiek S, Schultz JH, Nikendei C. Cost-effectiveness of peer role play and standardized patients in undergraduate communication training. BMC Med Educ. 2015 Oct 24;15:183. http://dx.doi.org/10.1186/s12909-015-0468-1 DOI: https://doi.org/10.1186/s12909-015-0468-1

Cook DA, Hatala R, Brydges R, et al. Technology-enhanced simulation for health professions education: a systematic review and meta-analysis. JAMA. 2011 Sep 7;306(9):978–88. http://dx.doi.org/10.1001/jama.2011.1234 DOI: https://doi.org/10.1001/jama.2011.1234

Walsh K, Levin H, Jaye P, Gazzard J. Cost analyses approaches in medical education: there are no simple solutions. Med Educ. 2013 Oct;47(10):962–8. http://dx.doi.org/10.1111/medu.12214 DOI: https://doi.org/10.1111/medu.12214

Emanuel EJ. The inevitable reimagining of medical education. JAMA 2020 Mar 24;323(12):1127. http://dx.doi.org/10.1001/jama.2020.1227 DOI: https://doi.org/10.1001/jama.2020.1227

McGaghie WC, Issenberg SB, Cohen ER, Barsuk JH, Wayne DB. Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. Acad Med. 2011 Jun;86(6):706–11. http://dx.doi.org/10.1097/ACM.0b013e318217e119 DOI: https://doi.org/10.1097/ACM.0b013e318217e119

Kneebone RL, Scott W, Darzi A, Horrocks M. Simulation and clinical practice: strengthening the relationship. Med Educ. 2004 Oct;38(10):1095–102. http://dx.doi.org/10.1111/j.1365-2929.2004.01959.x DOI: https://doi.org/10.1111/j.1365-2929.2004.01959.x

Skelly K, Kim P, Rosenbaum M, Wilbur J. Goldilocks and entrustment: finding the amount of learner autonomy that’s just right. MedEdPORTAL. 2020 Oct 13;16:10987. http://dx.doi.org/10.15766/mep_2374-8265.10987 DOI: https://doi.org/10.15766/mep_2374-8265.10987

Conner SM, Choi N, Fuller J, et al. Trainee autonomy and supervision in the modern clinical learning environment: a mixed-methods study of faculty and trainee perspectives. Res Sq. 2023 Jun 6;rs.3.rs-2982838. http://dx.doi.org/10.21203/rs.3.rs-2982838/v1 DOI: https://doi.org/10.21203/rs.3.rs-2982838/v1

Kamphuis C, Barsom E, Schijven M, Christoph N. Augmented reality in medical education? Perspect Med Educ. 2014 Sep;3(4):300–11. http://dx.doi.org/10.1007/s40037-013-0107-7 DOI: https://doi.org/10.1007/S40037-013-0107-7

Thistlethwaite J. Interprofessional education: a review of context, learning and the research agenda. Med Educ. 2012 Jan;46(1):58–70. http://dx.doi.org/10.1111/j.1365-2923.2011.04143.x DOI: https://doi.org/10.1111/j.1365-2923.2011.04143.x

Téléchargements

Publié-e

2024-08-06

Comment citer

1.
Guo E, Ramchandani R, Park Y-J, Gupta M. OSCEai : Apprentissage interactif personnalisé pour la formation médicale de premier cycle. Can. Med. Ed. J [Internet]. 6 août 2024 [cité 23 déc. 2025];16(6):7-14. Disponible à: https://journalhosting.ucalgary.ca/index.php/cmej/article/view/79220

Articles les plus lus du,de la,des même-s auteur-e-s