Sustained Observations of Changing Arctic Coastal and Marine Environments and Their Potential Contribution to Arctic Maritime Domain Awareness: A Case Study in Northern Alaska
DOI:
https://doi.org/10.14430/arctic4622Keywords:
observing systems, coastal hazards, Arctic shipping, sea ice, radar, ice drift, currents, decision support, riskAbstract
Increased maritime activities and rapid environmental change pose significant hazards, both natural and technological, to Arctic maritime operators and coastal communities. Currently, U.S. and foreign research activities account for more than half of the sustained hazard-relevant observations in the U.S. maritime Arctic, but hazard assessment and emergency response are hampered by a lack of dedicated hazard monitoring installations in the Arctic. In the present study, we consider a number of different sustained environmental observations associated with research into atmosphere-ice-ocean processes, and discuss how they can help support the toolkit of emergency responders. Building on a case study at Utqiaġvik (Barrow), Alaska, we investigate potential hazards in the seasonally ice-covered coastal zone. Guided by recent incidents requiring emergency response, we analyze data from coastal radar and other observing assets, such as an ice mass balance site and oceanographic moorings, in order to outline a framework for coastal maritime hazard assessments that builds on diverse observing systems infrastructure. This approach links Arctic system science research to operational information needs in the context of the development of a Common Operational Picture (COP) for Maritime Domain Awareness (MDA) relevant for Arctic coastal and offshore regions. A COP in these regions needs to consider threats not typically part of the classic MDA framework, including sea ice or slow-onset hazards. An environmental security and MDA testbed is proposed for northern Alaska, building on research and community assets to help guide a hybrid research-operational framework that supports effective emergency response in Arctic regions.