Collaborative Concept Mapping: Investigating the Nature of Discourse Patterns and Features of a Concept Map

Authors

  • Hlologelo Climant Khoza University of Pretoria
  • Bob Maseko University of Malawi

DOI:

https://doi.org/10.55016/ojs/ajer.v70i2.77325

Keywords:

Concept Maps, Collaboration, Discourse; Cartes conceptuelles, collaboration, discours

Abstract

Research in science education has established the significance of collaborative concept mapping as a powerful strategy in fostering conceptual learning. During such collaboration, students talk about concept map features (i.e., concepts to include, linking words, and cross-links) in constructing a joint map. The quality of the concept map produced depends on the nature of discourses that happen in these collaborative interactions. We explored the nature of discourses between pairs of biology students collaborating on concept mapping and how these discourses contribute to the enhancement of different features of the concept maps. Six students individually constructed weekly individual maps on different topics and then came together in pairs to construct a joint concept map. Their discussions during collaboration were audio-recorded. Both the individual and joint concept maps were analyzed for knowledge of breadth, knowledge of depth, and knowledge of connectedness. To analyze the discussions and understand the nature of the discourses, both deductive and inductive coding approaches were used. The coded episodes were then categorised into the nine discourse patterns identified by Fu et al. (2016). We then matched the episodes with the concept map features that were discussed. Findings indicate that the biology students’ collaboration exhibited mostly knowledge-sharing discourses when deliberating on the three features of a concept map. In turn, the number of valid concepts and propositions improved from individual to joint maps. Although the students’ discussions of cross-links were characterized by knowledge-sharing discourses, most of the joint maps did not show improvement in terms of the number cross-links. We discuss these findings and provide implications regarding the value of understanding the intricacies of discourse patterns in collaborative concept mapping.

La recherche dans le domaine de l'enseignement des sciences a établi l'importance de la cartographie conceptuelle collaborative en tant que stratégie puissante pour favoriser l'apprentissage conceptuel. Au cours de cette collaboration, les élèves discutent des caractéristiques de la carte conceptuelle (c'est-à-dire des concepts à inclure, des mots de liaison et des liens croisés) pour construire une carte commune. La qualité de la carte conceptuelle produite dépend de la nature des discours tenus lors de ces interactions collaboratives. Nous avons exploré la nature des discours entre des paires d'étudiants en biologie collaborant sur la cartographie conceptuelle et la façon dont ces discours contribuent à l'amélioration des différentes caractéristiques des cartes conceptuelles. Six étudiants ont construit individuellement des cartes hebdomadaires sur différents sujets et se sont ensuite réunis par paires pour construire une carte conceptuelle commune. Leurs discussions pendant la collaboration ont été enregistrées. Les cartes conceptuelles individuelles et communes ont été analysées du point de vue de la connaissance de l'étendue, de la connaissance de la profondeur et de la connaissance de la connexité. Pour analyser les discussions et comprendre la nature des discours, des approches de codage à la fois déductives et inductives ont été utilisées. Les épisodes codés ont ensuite été classés dans les neuf modèles de discours identifiés par Fu et al. (2016). Nous avons ensuite mis en correspondance les épisodes avec les caractéristiques de la carte conceptuelle qui ont été discutées. Les résultats indiquent que la collaboration des étudiants en biologie présentait principalement des discours de partage des connaissances lorsqu'ils délibéraient sur les trois caractéristiques d'une carte conceptuelle. Par ailleurs, le nombre de concepts et de propositions valides s'est amélioré entre les cartes individuelles et les cartes communes. Bien que les discussions des étudiants sur les liens croisés aient été caractérisées par des discours de partage des connaissances, la plupart des cartes conjointes n'ont pas montré d'amélioration en termes de nombre de liens croisés. Nous discutons de ces résultats et fournissons des implications concernant la valeur de la compréhension des subtilités des modèles de discours dans la cartographie conceptuelle collaborative.

Author Biographies

Hlologelo Climant Khoza, University of Pretoria

Dr. Climant Khoza is a Lecturer in Science Education at the University of Pretoria, South Africa. He holds a PhD from the University of the Witwatersrand. His research interests include science classroom talk and discourses. He is also interested in the development of science pre-service teachers’ knowledge base for teaching as well as using self-reflexive methodologies to study his own practice.

Bob Maseko, University of Malawi

Dr. Bob Maseko is Senior Lecturer in Science Education at the University of Malawi Chancellor College. He holds a PhD from the University of Witwatersrand in South Africa. He received his BEd and MEd in science education from the University of Malawi and University of Leeds, respectively. His research interests include the development and enactment of PCK in different classroom contexts, the use and deployment and affordances of various technologies as well as teachers’ interaction with curricular documents in the teaching and learning process.

References

Akcay, H. (2017). Constructing concept maps to encourage meaningful learning in science classroom. Education, 138(1), 9–16. https://doi.org/10.15694/mep.2016.000019

Alexopoulou, E., & Driver, R. (1996). Small‐group discussion in physics: Peer interaction modes in pairs and fours. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 33(10), 1099–1114. https://doi.org/10.1002

Awofala, A. O. A. (2011a). Effect of concept mapping strategy on students’ achievement in junior secondary school mathematics. International Journal of Mathematics Trends and Technology, 2(2), 11–16. https://doi.org/10.14445/22315373/IJMTT-V2I3P504

Bramwell-Lalor, S., & Rainford, M. (2014). The effects of using concept mapping for improving advanced level biology students’ lower-and higher-order cognitive skills. International Journal of Science Education, 36(5), 839–864. https://doi.org/10.1080/09500693.2013.829255

Cañas, A. J., Novak, J. D., & Reiska, P. (2015). How good is my concept map? Am I a good Cmapper? Knowledge Management & E-Learning: An International Journal, 7(1), 6–19. https://doi.org/10.34105/j.kmel.2015.07.002

Carr-Lopez, S. M., Galal, S. M., Vyas, D., Patel, R. A., & Gnesa, E. H. (2014). The utility of concept maps to facilitate higher-level learning in a large classroom setting. American Journal of Pharmaceutical Education, 78(9), ARTICLE 170. https://doi.org/10.5688/ajpe789170

Chang, K. E., Sung, Y. T., & Chen, I. D. (2002). The effect of concept mapping to enhance text comprehension and summarization. The Journal of Experimental Education, 71(1), 5–23. https://doi.org/10.1080/00220970209602054

Chen, S. L., Liang, T., Lee, M. L., & Liao, I. C. (2011). Effects of concept map teaching on students’ critical thinking and approach to learning and studying. Journal of Nursing Education, 50(8), 466–469. https://doi.org/10.3928/01484834-20110415-06

Choudhary, F., & Bano, R. (2022). Concept maps as an effective formative assessment tool in biology at secondary level. Journal of Education and Educational Development, 9(1). 157–175. http://dx.doi.org/10.22555/joeed.v9i1.454

Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Pearson.

de Ries, K. E., Schaap, H., van Loon, A. M. M., Kral, M. M., & Meijer, P. C. (2022). A literature review of open-ended concept maps as a research instrument to study knowledge and learning. Quality & Quantity, 56(1), 73–107. https://doi.org/10.1007/s11135-021-01113-x

Dhull, P., & Verma, G. (2020). Use of concept mapping for teaching science. The International Journal of Analytical and Experimental Modal Analysis, 12(3), 2481–2491.

Dillenbourg P. (1999). What do you mean by collaborative learning. In Dillenbourg P. (Ed.), Collaborative-learning: Cognitive and computational approaches (pp. 1–19). Elsevier.

Engelmann, T., & Hesse, F. W. (2010). How digital concept maps about the collaborators’ knowledge and information influence computer-supported collaborative problem solving. International Journal of Computer-Supported Collaborative Learning, 5, 299–319. https://doi.org/10.1007/s11412-010-9089-1

Engelmann, T., Tergan, S. O., & Hesse, F. W. (2009). Evoking knowledge and information awareness for enhancing computer-supported collaborative problem solving. The Journal of Experimental Education, 78(2), 268–290. https://doi.org/10.1080/00220970903292850

Erbil, D. G. (2020). A review of flipped classroom and cooperative learning method within the context of Vygotsky theory. Frontiers in Psychology, 11, Article 1157. https://doi.org/10.3389/fpsyg.2020.01157

Erkens, G., & Janssen, J. (2008). Automatic coding of dialogue acts in collaboration protocols. International Journal of Computer-Supported Collaborative Learning, 3(4), 447–470. https://doi.org/10.1007/s11412-008-9052-6

Fu, E. L., van Aalst, J., & Chan, C. K. (2016). Toward a classification of discourse patterns in asynchronous online discussions. International Journal of Computer-Supported Collaborative Learning, 11(4), 441–478. https://doi.org/10.1007/s11412-016-9245-3

Gijlers, H., & de Jong, T. (2013). Using concept maps to facilitate collaborative simulation-based inquiry learning. Journal of the Learning Sciences, 22(3), 340–374. https://doi.org/10.1080/10508406.2012.748664

Gillies, R. M. (2003). Structuring cooperative group work in classrooms. International Journal of Educational Research, 39(1–2), 35–49. https://doi.org/10.1016/S0883-0355(03)00072-7

Govender, N. (2015). Developing pre-service teachers' subject matter knowledge of electromagnetism by integrating concept maps and collaborative learning. African Journal of Research in Mathematics, Science and Technology Education, 19(3), 306–318. https://doi.org/10.1080/10288457.2015.1104839

Gurlitt, J., & Renkl, A. (2008). Are high‐coherent concept maps better for prior knowledge activation? Differential effects of concept mapping tasks on high school vs. university students. Journal of Computer Assisted Learning, 24(5), 407–419. https://doi.org/10.1111/j.1365-2729.2008.00277.x

Gurlitt, J., & Renkl, A. (2010). Prior knowledge activation: How different concept mapping tasks lead to substantial differences in cognitive processes, learning outcomes, and perceived self-efficacy. Instructional Science, 38, 417–433. https://doi.org/10.1007/s11251-008-9090-5

Hancock, B. (2002). Trent focus for research and development in primary health care: An introduction to qualitative research. University of Nottingham.

Hardman, J. (2020). Analysing student talk moves in whole class teaching. In N. Mercer, R. Wegerif & L. Major (Eds.), Routledge international handbook of research on dialogic education (pp. 152–166). Routledge.

Hilbert, T. S., & Renkl, A. (2008). Concept mapping as a follow-up strategy to learning from texts: what characterizes good and poor mappers? Instructional Science, 36(1), 53–73. https://doi.org/10.1007/s11251-007-9022-9

Kaseke, D., & Nyamupangedengu, E. (2019). Using concept map construction as a professional development activity aimed at developing a teacher's content knowledge for teaching a Biology topic: A self- study. South African Association for Research in Mathematics, Science and Technology Education (pp. 130–144), Durban.

Kelly, G. J. (2015). Discourse practices in science learning and teaching. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education, (pp. 321–336). Lawrence Erlbaum Associates

Khoza, H. C. (2022). Content modules as sites for developing science teacher identity in pre-service teachers: A case of one South African university. Eurasia Journal of Mathematics, Science and Technology Education, 18(9). Article em2150. https://doi.org/10.29333/ejmste/12319

Kinchin, I. M. (2014). Concept mapping as a learning tool in higher education: A critical analysis of recent reviews. The Journal of Continuing Higher Education, 62(1), 39–49. https://doi.org/10.1080/07377363.2014.872011

Kittleson, J. M., & Southerland, S. A. (2004). The role of discourse in group knowledge construction: A case study of engineering students. Journal of Research in Science Teaching, 41(3), 267–293. https://doi.org/10.1002/tea.20003

Kivunja, C., & Kuyini, A. B. (2017). Understanding and applying research paradigms in educational contexts. International Journal of Higher Education, 6(5), 26–41. https://doi.org/10.5430/ijhe.v6n5p26

Krieglstein, F., Schneider, S., Beege, M., & Rey, G. D. (2022). How the design and complexity of concept maps influence cognitive learning processes. Educational Technology Research and Development, 70(1), 99–118. https://doi.org/10.1007/s11423-022-10083-2

Kwon, S. Y., & Cifuentes, L. (2009). The comparative effect of individually-constructed vs. collaboratively-constructed computer-based concept maps. Computers & Education, 52(2), 365–375. https://doi.org/10.1016/j.compedu.2008.09.012

Mammen, J. R. (2016). Computer-assisted concept mapping: Visual aids for knowledge construction. Journal of Nursing Education, 55(7), 403–406. 10.3928/01484834-20160615-09

Machado, C. T., & Carvalho, A. A. (2020). Concept mapping: Benefits and challenges in higher education. The Journal of Continuing Higher Education, 68(1), 38–53. https://doi.org/10.1080/07377363.2020.1712579

Novak, J.D., Cañas, A.J. (2008). The theory underlying concept maps and how to construct them. Technical Report: IHMC CmapTools. https://cmap.ihmc.us/publications/researchpapers/theorycmaps/theoryunderlyingconceptmaps.bck-11-01-06.htm

Pudelko, B., Young, M., Vincent‐Lamarre, P., & Charlin, B. (2012). Mapping as a learning strategy in health professions education: a critical analysis. Medical Education, 46(12), 1215–1225. https://doi.org/10.1111/medu.12032

Riahi, Z., & Pourdana, N. (2017). Effective reading comprehension in efl contexts: Individual and collaborative concept mapping strategies. Advances in Language and Literary Studies, 8(1), 51–59. https://doi.org/10.7575/aiac.alls.v.8n.1p.51

Ruiz-Primo, M. A. (2000). On the use of concept maps as an assessment tool in science: What we have learned so far. REDIE. Revista Electrónica de Investigación Educativa, 2(1), 29–53. http://redie.uabc.mx/vol2no1/contents-ruizpri.html

Stevenson, M. P., Hartmeyer, R., & Bentsen, P. (2017). Systematically reviewing the potential of concept mapping technologies to promote self-regulated learning in primary and secondary science education. Educational Research Review, 21, 1–16. https://doi.org/10.1016/j.edurev.2017.02.002

Tan, E., de Weerd, J. G., & Stoyanov, S. (2021). Supporting interdisciplinary collaborative concept mapping with individual preparation phase. Educational Technology Research and Development, 69, 607–626. https://doi.org/10.1007/s11423-021-09963-w

Udeani, U., & Okafor, P. N. (2012). The effect of concept mapping instructional strategy on the biology achievement of senior secondary school slow learners. Journal of Emerging Trends in Educational Research and Policy Studies, 3(2), 137–142. https://doi/10.10520/EJC135345

Van Boxtel, C., van der Linden, J., Roelofs, E., & Erkens, G. (2002). Collaborative concept mapping: Provoking and supporting meaningful discourse. Theory Into Practice, 41(1), 40–46. https://www.jstor.org/stable/1477536

Vygotsky, L. S. (1978). Mind in Society. Harvard University Press.

Published

2024-07-30

How to Cite

Khoza, H. C., & Maseko, B. (2024). Collaborative Concept Mapping: Investigating the Nature of Discourse Patterns and Features of a Concept Map. Alberta Journal of Educational Research, 70(2), 201–223. https://doi.org/10.55016/ojs/ajer.v70i2.77325

Issue

Section

ARTICLES