The Role of Imaging Radar in the Development of the Canadian Arctic: Background and Applications

Authors

  • Jeff Sutton

DOI:

https://doi.org/10.14430/arctic1578

Keywords:

Climate change, Ice cover, Ice forecasting, Marine transportation, Meteorology, Movement, Ocean engineering, Remote sensing, Sea ice, Spatial distribution, SAR, SLAR, Cornwallis Island waters, Nunavut, Cornwallis Island, Devon Island waters

Abstract

Imaging radars have been in use in the Canadian Arctic for over 20 years. Initially the use was sporadic, as the relatively new, declassified technology in the form of real aperture side-looking airborne radars (SLAR) was flown and the results studied. This situation existed until the late 1970s, when the use of two types of imaging radars became more widespread. The Atmospheric Environment Service (AES) introduced the Motorola APS-94 SLAR for use on regular reconnaissance flights, while the Canada Centre for Remote Sensing (CCRS) introduced the CV-580 X-L Synthetic Aperture Radar (SAR) for periodic missions in the Arctic for research in support of ice studies and shipping. As demand for ice information increased in support of offshore drilling in the Beaufort Sea and navigation in the Eastern Arctic and along the east coast, more systems were brought on line. AES added two more SLARs to their reconnaissance efforts in the early '80s, while Intera developed a digital SLAR and two digital SAR systems, STAR-1 and STAR-2. As part of a multi-year program to support AES's ice reconnaissance mandate in the Arctic and east coast areas, Intera has developed a dual-sided SAR in a jet aircraft for high-resolution, large-area coverage. Imaging radar, with its all-weather, day/night and cloud-penetrating capability, has proved to be the almost ideal sensor for many arctic applications. In support of offshore drilling in Alaska and Canada, large areas were flown to obtain up-to-date information for use in navigation and forecasting ice conditions. Real-time SAR and SLAR data can be downlinked to ships navigating in ice-infested waters to aid officers in determining the safest, most efficient and economical routing through the ice. Research into ice properties and signatures has improved our knowledge and understanding of the ice, which covers a large part of Canada's territorial waters for much of the year.

Key words: synthetic aperture radar (SAR), side-looking airborne radar (SLAR), Arctic, offshore drilling, modelling, navigation, development

Downloads

Published

1991-01-01