On the Links between Microwave and Solar Wavelength Interactions with Snow-Covered First-Year Sea Ice

Authors

  • David G. Barber
  • Ellsworth F. LeDrew

DOI:

https://doi.org/10.14430/arctic1300

Keywords:

Albedo, Algae, Infrared remote sensing, Mathematical models, Measurement, Passive microwave remote sensing, Sea ice, Snow, Solar radiation, SIMMS, Canadian Arctic

Abstract

Electromagnetic (EM) energy at solar and microwavelengths will interact with a snow-covered sea ice volume as a function of its geophysical properties. The seasonal metamorphosis of the snow cover modulates the relative distribution of the three main interaction mechanisms of EM energy: reflection, transmission, and absorption. We use a combination of modeling and observational data to illustrate how the total relative scattering cross section (Sigma 0) at microwavelengths can be used to estimate the surface climatological shortwave albedo and the transmitted Photosynthetically Active Radiation (PAR) for a snow-covered, first-year sea ice volume typical of the Canadian Arctic. Modeling results indicate that both 5.3 and 9.25 GHz frequencies, at HH polarization and incidence angles of 20 degrees, 30 degrees, and 40 degrees can be used to estimate the daily averaged integrated climatological albedo (Alpha). The models at 5.3 GHz, HH polarization, at 20 degree, 30 degree, and 40 degree incidence angles were equally precise in predications of Alpha. The models at 9.25 GHz were slightly less precise, particularly at the 40 degree incidence angle. The reduction in precision at the 40 degree incidence angle was attributed to the increased sensitivity at both 5.3 and 9.25 GHz to the snow surface scattering term (Sigma 0 ss) used in computation of the total relative scattering cross section (Sigma 0). Prediction of subsnow PAR was also possible using the same combination of microwave sensor variables utilized in prediction of Alpha, but because subice algal communities have evolved to be low light sensitive, the majority of the growth cycle occurs prior to significant changes in Sigma 0. A method of remote estimation of snow thickness is required to be scientifically useful. Observational data from the European ERS-1 SAR were used to confirm the appropriateness of the modeled relationships between Sigma 0, Alpha, and PAR. Over a time series spanning all conditions used in the modeled relationships, the same general patterns were observed between Sigma, Alpha, and PAR.

Key words: microwave scattering models, snow, sea ice, climatological shortwave radiation, photosynthetically active radiation, microwave remote sensing

Downloads

Published

1994-01-01