

MULTI-MODALITY CT IMAGING OF HUMAN BONE FOR IMPROVED VALIDATION OF SUBJECT-SPECIFIC FINITE ELEMENT ANALYSIS

Bryce A. Besler^{1,2,3}, David D. McErlain^{1,3}, Clara Sandino^{1,3}, Steven K. Boyd^{1,2,3,4}

¹Human Performance Lab; ²Biomedical Engineering Program; ³McCaig Institute for Bone and Joint Health;

⁴Department of Radiology, University of Calgary

babesler@ucalgary.ca, dmcerlain@ucalgary.ca, csandino@kin.ucalgary.ca, skboyd@ucalgary.ca

INTRODUCTION

Finite element analysis (FE) is a promising alternative to dual-energy x-ray absorptiometry for improved prediction of fracture risk as FE can incorporate bone density, geometry, and microarchitecture [1]. However, the accuracy of FE models is heavily influenced by the spatial resolution of the CT scan [2]. In this study we quantify the architectural differences in trabecular bone between different modalities, specifically high-resolution peripheral quantitative computed tomography (HR-pQCT) and micro-computed tomography (μCT) , and measure their effect on the resulting FE models.

METHODS

Two cadaveric, human distal tibiae were imaged using HR-pQCT (XtremeCT, Scanco Medical, Switzerland), with a voxel size of 82 μ m. After imaging, four cubes, 10mm edge length, were cut and scanned using μ CT (μ CT-35, Scanco Medical, Switzerland.), with a voxel size of 20 μ m. During a sensitivity analysis, the μ CT image data was segmented using a threshold based technique and resampled to voxel sizes of 40 μ m, 60 μ m, and 80 μ m to assess the effect of voxel size on the FE results. The FE results were statistically compared with a one-way repeated measures ANOVA and a Tukey's post-hoc test.

Based on the known location of each cube recorded during the cutting process, the µCT data was manually aligned to the larger HR-pQCT image, where mutual information registration was applied for accurate alignment. Virtual cubes were extracted from the registered HR-pQCT data. All cube image data was rescaled to preserve the bone volume/total volume ratio. Subsequently, all image data was converted to hexahedron elements for FE analysis and subjected to 1% uniaxial compression (FAIM v6.0, Numerics88) in the x-, y-, and z-directions. The resulting FE data was compared with a two-way ANOVA, with Bonferroni multiple comparisons test.

RESULTS

The sensitivity analysis found no statistically significant differences in reaction force between any cubes with different resolutions when compressed in the z-direction. The mean

percent error, when compared to the 20 μ m cube, for the 40 μ m, 60 μ m, and 80 μ m cubes was 0.06%, 0.45%, and 0.76%, respectively. In the y-direction, there were significant differences between the 20 μ m and the 80 μ m (p < 0.01; 62.51% error). When loaded in the x-direction, there were significant differences between the 20 μ m FE cube and the 60 μ m and 80 μ m FE cubes (p<0.05; respective mean percent errors of 121.27% and 182.83%). With increasing voxel size, the reaction force was overestimated. As shown in figure 1, the registration between μ CT and HR-pQCT was successful. However, there were statistically significant differences found between the μ CT versus HR-pQCT FE data in the y- and x-direction (p<0.01; 23.95% and 21.04% error, respectively) but none were found for the z-direction (p>0.05, 0.14% error.)

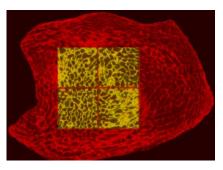


Figure 1. Registered distal tibia (HR-pQCT - red) to the μ CT acquired cubes (yellow). The registered image appears green in overlap.

DISCUSSION AND CONCLUSIONS

It was shown there is little difference in the FE results loaded in the z-direction upon rescaling μCT data (mean percent errors less than 0.8%). However, there are large changes in the non-axial (i.e. x and y) directions. It is recommended that μCT data be rescaled up to 40 μm . In addition, it was shown that μCT data could be successfully registered to HR-pQCT (see figure 1). For a given resolution, μCT data is only comparable to HR-pQCT data in the z-direction. In conclusion, HR-pQCT may not be an ideal substitute for μCT micro-architectural data. This study improves our understanding on the use of HR-pQCT imaging for quantification of bone micro-architecture.

REFERENCES

- 1. Nishiyama, K. K., et al. Osteoporos Int. 24:1733-40, 2013.
- 2. Bevill G & Keaveny TM. Bone. 44:579-84, 2009.