

BHSc Research Symposium • October 2012 • Vol. 2, No. 2

An agent-based simulation of the nervous system's reflex response to pain

Tatiana Karaman, Christian Jacob

Abstract

The reflex arc is an important process of the nervous system that helps protect the body from damage by responding instantaneously to external stimuli, and has undergone a lot of research in the last century. This arc has been represented and taught using a variety of methods including diagrams, graphs, animations and mathematical equations^{1,2}. A missing connection in these methods can be seen between the complex mathematics used for research and a suitable visual representation for easier learning and understanding of the topic. A suitable combination could provide a powerful tool useful in both research and education. The Reflex Arc simulation, part of the Lindsay Virtual Human Project, proposes a novel way of combining a number of resources into one multi-scale model of the nervous system's reflex response to pain. Among some of the advantages of the model are its high quality visual components with a level of abstraction that still keeps them easily recognizable, and the user's ability to freely navigate around the three-dimensional space in which it is located and watch the path of the reflex arc from a distant or detailed perspective. The interaction processes are modeled following an agent-based programming paradigm³. Each agent, for instance the nociceptors in sensory neurons, act in accordance with the sharp object that triggers a response when the two collide. The agent-based model representation allows for user and global parameter changes while the simulation is running. This project and its future additions provides contents for a novel set of computational tools that can be used for a variety of research and educational purposes.

References

- 1. Hodgkin, A. L., Huxley, A. F. 1952 Quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology. 119(4), 500-544.
- 2. Goldman, D.E. 1943. Journal of General Physiology. 27(37)
- Bonabeau, E. 2002 Agent-based modeling: Methods and techniques for simulating human systems. The National Academy of Sciences. 99(3) 7280-7287.