Canadian Medical Education Journal

Reviews, Theoretical Papers, and Meta-Analyses

Simulation models in direct ophthalmoscopy education: a systematic review

Modèles de simulation dans l'enseignement de l'ophtalmoscopie directe : revue systématique

Deepaysh DCS Dutt, 1,2,3 Harry Hohnen, 3 Subham Kulshrestha, 3 Hessom Razavi 1,4

¹The University of Western Australia, Centre for Ophthalmology and Visual Science, Western Australia, Australia; ²The University of Western Australia, Health Professions Education, Western Australia, Australia; ³Royal Perth Hospital, Western Australia, Australia; ⁴Lions Eye Institute, Department of Ophthalmology, Western Australia, Australia

Correspondence to: Dr Deepaysh Dutt, Royal Perth Hospital, Victoria Square, Perth, WA, 6000; phone: +61 422 504 650; email: deepaysh.dutt@gmail.com Published ahead of issue: Jul 7, 2025; published: Nov 6, 2025. CMEJ 2025, 16(5) Available at https://doi.org/10.36834/cmej.79989

© 2025 Dutt, Hohnen, Kulshrestha, Razavi; licensee Synergies Partners. This is an Open Journal Systems article distributed under the terms of the Creative Commons Attribution License. (https://creativecommons.org/licenses/by-nc-nd/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is cited.

Abstract

Background: An ever-increasing range of simulation devices are available for direct ophthalmoscopy. However, the effectiveness of simulation design and components have not been evaluated. This systematic review aims to describe and evaluate direct ophthalmoscopy simulation models and highlight components that have been found to be effective, and challenges faced when using simulation models.

Methods: A systematic review of the literature was conducted according to the PRISMA statement in four online databases: Medline, Embase, Cochrane Library and Web of Science. Citation searching using Google Scholar and Citationchaser was also undertaken. Validity and effectiveness were assessed using a validated scale based on Messick's modern validity framework and McGaghie's proposed levels of simulation-based translational outcomes respectively.

Results: A total of 1,275 titles and abstracts were screened. A total of 37 studies were included in the final analysis. Physical models, digital models and virtual reality direct ophthalmoscopy models were described in studies. A plastic cannister design was the most common in the literature, followed by a sphere with a painted fundus and the EyeSi Direct Ophthalmoscope Simulator (VRmagic, GmbH, Mannheim, Germany). Simulation was effective in its ability to allow students to engage in repeated practice without patient discomfort. The lack of realism was the most noted limitation of simulation practice.

Conclusion: While more robust evidence is needed to support simulation design efficacy in direct ophthalmoscopy, simulation-based teaching of direct ophthalmoscopy will likely be increasingly effective as technological advancements support improved realism and affordability.

Résumé

Contexte: Il existe une gamme toujours plus large de dispositifs de simulation pour l'ophtalmoscopie directe. Cependant, l'efficacité de la conception et des composants des simulations n'a pas été évaluée. Cette revue systématique vise à décrire et à évaluer les modèles de simulation d'ophtalmoscopie directe, à mettre en évidence les composants qui se sont révélés efficaces et à souligner les défis rencontrés lors de l'utilisation de modèles de simulation.

Méthodes: Une revue systématique de la littérature a été réalisée conformément à la déclaration PRISMA dans quatre bases de données en ligne: Medline, Embase, Cochrane Library et Web of Science. Une recherche de citations à l'aide de Google Scholar et Citationchaser a également été effectuée. La validité et l'efficacité ont été évaluées à l'aide d'une échelle validée basée respectivement sur le cadre de validité moderne de Messick et les niveaux proposés par McGaghie pour les résultats translationnels basés sur la simulation.

Résultats: Au total, 1 275 titres et résumés ont été examinés. Au total, 37 études ont été incluses dans l'analyse finale. Les études décrivaient des modèles physiques, des modèles numériques et des modèles d'ophtalmoscopie directe en réalité virtuelle. La conception d'un boîtier en plastique était la plus courante dans la littérature, suivie d'une sphère avec un fond peint et du simulateur d'ophtalmoscope direct EyeSi (VRmagic, GmbH, Mannheim, Allemagne). La simulation s'est avérée efficace pour permettre aux étudiants de s'exercer de manière répétée sans causer de gêne aux patients. Le manque de réalisme était la limite la plus souvent mentionnée de la pratique de la simulation.

Conclusion: Bien que des preuves plus solides soient nécessaires pour étayer l'efficacité de la conception de la simulation en ophtalmoscopie directe, l'enseignement de l'ophtalmoscopie directe basé sur la simulation sera probablement de plus en plus efficace à mesure que les progrès technologiques permettront d'améliorer le réalisme et l'accessibilité financière.

Introduction

Direct ophthalmoscopy (DO) remains an essential basic skill in medical education. For non-specialists, it can play a crucial role in diagnosing ophthalmic disease, which may constitute 2-19% of patient presentations to general practioners and hospital emergency departments.¹⁻³ DO also allows for rapid screening and assessment of systemic disease, which may prompt essential sight-saving or life-saving therapy.⁴

However, proficiency of medical practitioners in performing DO has been poor.⁵⁻⁹ This may be due to a lack of regular practice,^{10,11} which is exacerbated by the reduction in ophthalmology teaching time in medical schools in countries such as Australia,^{2,12} Canada,¹³ UK,^{14,15} and USA.¹⁶ This undoubtedly contributes to a lack of confidence in performing DO, reducing its use by medical students and doctors in clinics and hospitals.^{8,17-19}

The evident mismatch between the utility of DO and its current use in clinical practice has encouraged investigation into methods of improvement in DO education. This has resulted in the implementation of teaching practices such as modified teaching ophthalmoscopes,²⁰ non-mydriatic fundus cameras²¹ and fundus photograph matching.^{22,23} A practice that has proved to be particularly promising is the use of simulation in DO education. Simulation allows for repeated convenient practice of DO technique, as it eliminates the need for patients or patient-actors.24,25 The use of simulation in DO education ranges from digital simulation machines^{26,27} to plastic cannister eye models.^{28,29}

Studies have examined the use of different models for their use in DO education.^{30,31} However, a systematic review of the literature describing and evaluating simulation models for DO education is lacking. The aim of this systematic review was to describe and evaluate model designs, components and considerations that have been found to be effective, and challenges faced when using simulation models to teach and assess direct ophthalmoscopy.

Methods

This systematic review was conducted according to the PRISMA statement. The review was registered on an international prospective register of systematic reviews (PROSPERO) prior to carrying out literature searches (registration ID: CRD42023437488).

Search methods

A comprehensive literature search was conducted in July 2023 in four online databases: Medline, Embase, Cochrane Library and Web of Science. To identify additional citations, searching in Google Scholar and citation searching via Citationchaser was also undertaken. A combination of freetext and thesaurus searching was used. No search limit was applied.

Inclusion and exclusion criteria

Inclusion and exclusion criteria were based on a population, intervention, comparison and outcome strategy. For studies to be included, participants could be medical students, medical practitioners, allied health staff and other health science students. Interventions that were preferred included training on a given simulation model. Simulation models include any device that served as an artificial eye, or that provided students with examination findings that mimicked those found in DO. Studies were included regardless of the model of ophthalmoscope used. Studies were also included if they described new simulation models and lacked experimental design. Outcomes that were preferred included academic grades or proficiency and measures of confidence and preference. Studies were included which included either qualitative or quantitative outcomes of eye model utility for DO. Studies that described model eyes designed for uses other than direct ophthalmoscopy, such as indirect ophthalmoscopy training and surgical training, were excluded from the paper.

Data collection

Titles and abstracts of all studies returned from the literature search were screened independently by the first and second author. Studies that were thought to meet the eligibility criteria had full texts screened by the first and second author. Disagreements were resolved by discussion.

The first and second author independently extracted data from full texts of studies that met the eligibility criteria. Data collected included author details, year of publication, title of study, country that the study was run, participants, study design, methodology, outcome, ophthalmoscopy simulator details, role of simulation model, study conclusions, benefits and drawback of using simulation in ophthalmoscopy, and benefits and drawbacks of the particular simulation model used in the study.

Data analysis

Studies were arranged according to the type of simulator used: physical, digital, augmented reality, and/or virtual reality. Validity of each study was assessed using a validated scale developed by Beckman, Cook and Mandrekar³² based on Messick's modern validity framework in Table 1.33 This scale assesses validity based on the parameters of content, response processes, internal structure, relations to other variables and consequences. Each parameter is rated on the following scale: NA (no discussion of source of validity evidence), 0 (discussion of source of validity but no data presented), 1 (data weakly supports source of validity or is limited) and 2 (data strongly supports source of validity). The effectiveness of each simulator design was evaluated based on McGaghie's proposed levels of simulation-based translational outcomes adapted to the outcomes of this study in Table 2.34 Each study was also assessed using the Kirkpatrick's Model for Training Outcomes. 35,36 This is a 4-level model that evaluates training programs based on their impact on participants and is summarised in Table 3.35,36

Table 1. Validity assessment scale based on Messick's modern validity framework 32,33

Parameter	Definition	Example
Content	Effectiveness of test items in measuring a desired construct, referring to its format, themes and wording	Expert review of a test to ensure items are representative of all aspects the construct being measured
Response processes	Analysis of thought processes and behaviours of participants and observers, with reference to the intended construct.	Standard setting of test administration, interviews of participants to understand reasons behind their responses.
Internal structure	The reliability of test items to assess a construct. Complex constructs may require test items to be multidimensional, whereas simple constructs my require homogenous test items.	Calculating factor analysis, inter-term reliability and test- retest reliability
Relations to other variables	Relationship between test scores and external measures that have theoretical relevance	Comparing test scores with those of different expertise, or in a different clinical setting or speciality.
Consequences	Desired and unintended impacts of using the test	Comparing test scores on a simulation device with patient satisfaction, or ease of use of DO in a clinical setting.

Table 2. Effectiveness assessment scale based on McGaghie et al.³⁴ proposed levels of simulation-based translational outcomes

Parameter	Definition	Example	Rating
Internal acceptability	Trainee/student satisfaction with simulator	Interviewing students on usability of simulators	Level 1
Contained effects	Changes in performance in using the simulator	Post training assessment of performance using a DO simulator	Level 2
Downstream effects	Changes in behaviour in clinical setting	Performance of students doing DO with real patients	Level 3
Target effects	Changes in patient outcomes	Assessing accuracy of diagnosis and/or changes in patient morbidity and mortality	Level 4
Collateral effects	Changes on a hospital-wide or systems level	Skill retention, rates of misdiagnosis, economic effects	Level 5

Table 3. Kirkpatrick Model for training outcomes

Parameter	Definition	Example	Rating
Reaction	Evaluation of a training program that gauges motivation, interest and attention of participants.	Post-course satisfaction survey	Level 1
Learning	Evaluation of a training program that gauges knowledge acquisition of a participant	Written assessments, quizzes or OSCEs	Level 2
Behaviour	Evaluation of a training program based on participants ability to use their skills in the workplace	Ward based assessments, supervisor reports	Level 3
Results	Evaluation of a training program based on its overall impact, usually on system wide outcomes.	System wide audits on patient outcomes or finances	Level 4

Results

The screening process is summarised in Figure 1, with a total of 1,263 titles and abstracts screened. A total of 37 studies were included in the final analysis. There was strong inter-rater reliability between authors (Cohen's Kappa = 0.8344).

A summary of the demographics of included studies are presented in Table 4. A more detailed demographics table, including citations to relevant studies, is presented in Supplementary Table 1. Details of each included study are summarised in Appendix A, including measures of validity and simulator effectiveness. Most included studies displayed poor measures of validity. Studies also showed poor effectiveness ratings for their respective simulation

technique. Only one study achieved a Kirkpatrick Level 3, while 20 (54%) studies achieved a Level 2 and 8 (22%) studies achieved a Level 1.

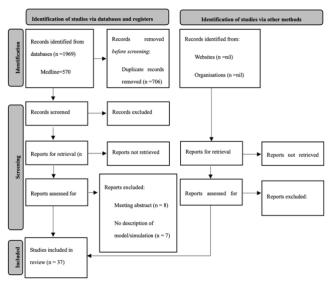


Figure 1. PRISMA diagram of study selection

There were a variety of ophthalmoscopy simulator models used in included studies, some of which are commercially available. The most common commercially available models used in studies include the EyeSi Direct Ophthalmoscope Simulator (VRmagic, GmbH, Mannheim, Germany) 37,38,39,40,41 (n=5, 14%), Eye Examination Simulator (Kyoto Kagaku Co. Ltd., Kyoto, Japan) 26,42,43,44 (n=4, 11%) and Eye Retinopathy Trainer (Adam, Rouilly, Sittingbourne, Kent, UK) 27,45,46 (n=3, 18%).

The most widely reported benefit of simulation models for direct ophthalmoscopy teaching is that students are allowed repeated practice without causing discomfort to patients. ^{27,38,40,41,43,47,48,49,50} Students who underwent direct ophthalmoscopy training using simulation models were also more capable of performing DO on initial contact with patients. ^{38,40} Additionally, students were more confident when interacting with patients after training on DO simulation models. ^{44,49} A simulation environment was perceived by students as low pressure and hence increased their positive experience of acquiring a difficult skill. ^{44,48}

The most commonly cited challenge of simulation models for DO include the lack of realism.^{40,41,43} The simulation environment was felt to be not as true to the clinical scenario as it would be if students practiced on simulated patients.^{40,41,43}

Table 4. Demographic data with reference to included studies

Features	Number (%)
Year	
Before 2000	6 (16%)
2000-2009	5 (14%)
2010-2019	17 (46%)
2020-2023	9 (24%)
Number of participants	
NA	9 (24%)
1-100	15 (55%)
101-200	6 (16%)
More than 200	2 (5%)
Type of participants	
Medical students	22 (59%)
Non-medical students	2 (5%)
Junior doctors	4 (11%)
Senior doctors / consultants	1 (3%)
University staff	1 (3%)
Country	2 (070)
Australia	2 (5%)
Brazil	2 (5%)
Canada	5 (14%)
China	1 (3%)
Colombia	1 (3%)
Denmark	1 (3%)
Germany	2 (5%)
Japan	1 (3%)
Saudia Arabia	1 (3%)
South Africa	1 (3%)
Tunisia	1 (3%)
UK	· · ·
USA	5 (14%)
	14 (38%)
Type of simulator	2 (50/)
3D printed model	2 (5%)
Ball with painted fundus	5 (14%)
Eye Examination Simulator (Kyoto Kagaku Co. Ltd., Kyoto, Japan)	4 (11%)
Eye Retinopathy Trainer (Adam, Rouilly,	3 (8%)
Sittingbourne, Kent, UK)	3 (6%)
EyeSi Direct Ophthalmoscope Simulator (VRmagic,	E (140/)
GmbH, Mannheim, Germany)	5 (14%)
lowa Ophthalmoscopy Model	1 (3%)
Mannequin head	3 (8%)
OphthoSim	1 (3%)
Plastic cannister	8 (22%)
Timberlake Eye Model	· '
VR or AR Headset	1 (3%)
VK OF AK HEADSET	5 (14%)

Physical simulation models

Plastic cannister models were the most common type of simulator used (n=8,22%). The basic design of this involves a cylindrical cannister with an aperture on one end, with fundus slides on the other end. Some cannister models feature variable axial lengths and contact lenses to simulate hyperopia or myopia. Swanson et al. 51 administered a pre-test and post-test after students trained on four types of plastic cannister DO simulation models. They found students had improved confidence

levels and knowledge of pathology after training on plastic cannister models. Chung et al.,52 Donovan et al.,53 and Levy⁵⁴ agreed that a plastic cannister design was costeffective, easy to set up with readily available materials and could easily display both normal and pathologic fundi with interchangeable slides. Another benefit noted in the study by Kelly et al.48 was the ability for cannister models to simulate the optics of real eyes with the addition of a contact lens. Wessels et al.55 noted that changing the axial length of cannister models can simulate a range of ametropia, thereby changing the difficulty for students. Kennedy et al.⁵⁶ described the Timberlake Eye Model, a commercially available plastic cannister design with a variable axial length and ability to display fundus photos with pathology. The benefits of this design included the lower cost, and ability to vary simulation difficulty. A draw back of the Timberlake Eye model is the low quality of fundus photos. Another drawback of the cannister design is that students must maintain a fixed orientation with respect to the cannister during examination, or else the fundus view will be lost.52,53

Other common physical simulator designs include spherical models, that can be made with either a tennis ball or pingpong ball, with an aperture opposite a fundus. Fundus features were either represented with photos or were painted to the inside surface of the sphere. Martins et al. 49 assessed students' ability to perform DO with simulation training compared to without simulation training, using an eye model with a plastic sphere design. Here, pupil size and ametropia could be simulated, altering the difficulty of the simulated exam. Since the component materials are readily available, the cost effectiveness of this design has been emphasised. 35,57

Two studies used 3D printing to produce simulation models for DO training. This method was also cost effective. Khan and Hennessy⁵⁸ described the Prince of Wales Eye Model with an area for insertable lenses and an option for inserting a cartridge with normal or pathologic fundus images, which also allows different difficulty of simulation. However, only a 35mm diameter lenses can be used, and examination of the peripheral pole of the retina requires a separate lens which adds cost. Wu et al.50 conducted a randomised control trial where students trained on either simulated patients and an eye model, or only on a simulated patient using a 3D printed eye model, and found that training with an eye model improved fundus identification rate and time. Benefits of this design included fewer components, simple assembly, a realistic curved posterior pole and ability to change fundus photos.

Four studies included the use of the Eye Examination Simulator (Kyoto Kagaku Co. Ltd., Kyoto, Japan), a commercially available simulation model that is comprised of a mannequin head with an adjustable pupil size and interchangeable fundus slides that can display different retinal conditions. Larsen et al.⁴⁴ found students who practiced on this model increased their confidence and DO ability. However McCarthy et al.²⁶ noted that students still felt that that this simulation method was not realistic and image quality was poor. This was echoed in a study by Bukhari,⁴³ where participant noted that the model does not simulate a real time clinical scenario compared to practicing on patients.

Digital simulation models

The only digital simulation model used in studies was the Eye Retinopathy Trainer (Adam, Rouilly, Sittingbourne, Kent, UK). This design involves a mannequin head with a high-resolution digital screen display on the fundus. This can display diabetic, common and less common retinal conditions. This model was used in three studies. Gupta et al.⁴⁵ and Yusuf et al.⁴⁶ noted increased confidence and comfort when students trained on this simulation model. However, the cost, lack of physician-patient relationship and need for trained teaching staff have been cited as potential drawbacks by Androwiki et al.²⁷

Virtual and Augmented reality simulation models

The most common virtual reality DO simulator used in studies was the EyeSi Direct Ophthalmoscope Simulator (VRmagic, GmbH, Mannheim, Germany). The EyeSi DO simulator consists of an ophthalmoscope handpiece with a built-in digital screen display and a patient model head connected to an external touchscreen display. Patient cases and pathologies are programmed into the device, and objective feedback is provided to students based on their performance. Boden et al.³⁸ evaluated the use of the EyeSi DO simulator in an OSCE setting. Students found that the model had high realism with its ability to imitate eye movements, blinking and pupil size. Both Boden et al. 38 and Howell et al.⁴⁰ noted the potential for real-time instructor feedback with the use of the additional monitor on EyeSi. This feature also allows the EyeSi to be used effectively in exam scenarios as the examiner can see what the student is assessing.⁵⁴ DO EyeSi Deuchler et al.³⁹ conducted a pretest and post-test on students after training with EyeSi Direct or with a combination of EyeSi direct and EyeSiNet for direct and indirect ophthalmoscopy and found that learning is observed with simulator training, but is higher if students trained on both a simulator and theory based online platform. Tso et al.41 allowed students to complete

a traditional DO teaching session followed by EyeSi DO simulator, and surveyed student's confidence in DO. Training on the EyeSi improved students' confidence and was preferred by the majority of students compared to traditional DO teaching methods. Additional benefits noted were the ability for real-time labelling of fundus pathology, and the variable difficulty levels, with easier starting points for beginners. Students did find that the online modules were lengthy, and some expressed a preference for more normal fundi to examine. Howell et al.⁴⁰ describes that one of the major challenges faced when student train on the EyeSi includes the persisting unfamiliarity with the operation of an actual direct ophthalmoscope.

Other VR DO simulation solutions involve programming a DO simulation software to existing VR headsets and were used by five studies. Beneficial features of these models include the ability to display fundus pathologies. Wilson et al.59 carried out a user evaluation after completing a training module on a VR headset with gamified training module that outlines eye anatomy and DO steps. Whilst participants did increase in confidence in performing DO, they felt that the simulation design was not realistic, as there was a lack of a physical manneguin head to manoeuvre around. Acosta et al. 60 highlights that software developments are needed to increase the effectiveness of these VR simulations. Chan et al.⁶¹ compared the use of the HTC Vive controller-based examination, Valve Index "Knuckle" controller-based examination, Microsoft HoloLens gesture-based examination, and noted that participants found it difficult to familiarise with operation of the three different simulations, and that headsets were heavy, and voice commands were inaccurate.

Discussion

Direct ophthalmoscopy simulation models utilise a range of technologies to provide increasingly effective learning opportunities to students. The studies in this systematic review highlight key benefits and challenges faced in direct ophthalmoscopy simulation in medical education. An important benefit of simulation training is to provide students with a safe environment to have repeated practice without potential inconvenience or harm to real patients. ^{27,38,40,41,43,47,48,49,50} This benefit has been shown in simulation training in other medical disciplines such as general surgery, obstetrics and anaestheics. ^{62,63} Repeated practice has been shown to be beneficial in the cognitive and metacognitive aspects of learning. ⁶⁴⁻⁶⁶

The increase in confidence of participants is an important and often overlooked benefit of simulation design. 41,44,46,49

Confidence and perceived competence can increase students' autonomous motivation, which has been shown to improve learning outcomes.⁶⁷ An increase in student confidence may allow students to be more involved in their clinical placements and hence has the potential to increase their exposure to real patient scenarios. DO simulation may therefore provide a suitable adjunct to training on simulated patients.

A recent systematic review by Paik et al.⁶⁸ looked at technology-enhanced methods for direct ophthalmoscopy training, including smartphone ophthalmoscopy, tracked and non-tracked direct ophthalmoscopy simulation models (where tracked models had a real-time projection of the learner's view). Paik et al.68 had also found improved efficacy of simulation models in direct ophthalmoscopy training, where non-tracked direct ophthalmoscopy simulators and smartphone ophthalmoscopy were superior in training competency relative to control traditional direct ophthalmoscopy on real eyes. However, studies using tracked direct ophthalmoscopy training showed non-superiority compared to controls, which was attributed to possible effect of minimal instructor guidance in these training programs. Paik et al.⁶⁸ had also found an increase in participants confidence and perceived competence in DO after training on simulation models. With this, simulation models were shown to be important tools in direct ophthalmoscopy training, which is similar to the findings of our review.

Smartphone ophthalmoscopy was excluded from this systematic review, as it is not currently approved in use in healthcare settings. However, smartphone ophthalmoscopy may pose some benefits over traditional ophthalmoscopy as outlined by Paik et al.,⁶⁸ including a more gradual learning curve, the ability to capture images, diagnostic accuracy, clinical competence and confidence. There is also possibility for future integration of Al models in recognising clinical signs in screening and diagnosis. Hence its use should be assessed and validated in healthcare settings, as it is an important consideration for the future direction of ophthalmoscopy.

Future developments in direct ophthalmoscopy simulation models should address the challenges outlined in this systematic review. Firstly, most of the studies that qualified for this review were of Kirkpatrick level 1 or 2, and did not examine effectiveness in the clinical context, or its impact on the wider health system. Studies looked only at student satisfaction or improvements in simulation performance. Studies on simulation in medical specialties other than ophthalmology also often show improvement in

theoretical and clinical knowledge and procedural skills, however the majority of these studies do not report impact on clinical outcomes. 62,69 Additionally, eight studies presented were descriptive studies, and 15 studies were a prospective single arm design with no control group. While these studies are important initial steps, a stronger evidence base should be built to support direct ophthalmoscopy simulation training and further investigate its effective components.

Secondly, it is important to ensure that simulation models enact a high level of realism. In this context, realism refers to not only the physical resemblance of a simulation model to its human counterpart, but also how a simulation exercise unfolds, and how the simulation interacts to its surrounding environment.⁷⁰ In direct ophthalmoscopy, this may involve the use of mannequin heads, or a spherical eyeball model, which may allow students to practice the manoeuvring involved in performing this examination in the clinical environment.

Thirdly, it is important to note that cost of simulation has a significant impact on the opportunity to access to these devices. Low cost of production was highlighted in many studies in this review.^{27,48,50,52,53,56,71} Nevertheless, some of these models may still not be affordable in certain educational circumstances, such as in lower income societies where DO is nevertheless a required clinical skill. Hence it may be important for newer simulation devices to attempt to limit their cost to consumers with measures that do not compromise the effectiveness of simulation, such as by providing lower fidelity mannequins.⁷² Newer technologies such as 3D printing may address this, as it allows for the development of cost effective of models.^{50,58}

Conclusion

The developments in simulation models for direct ophthalmoscopy have proven to be effective in improving student satisfaction and learning outcomes. This systematic review highlights effective components of certain simulation designs. Future developments in direct ophthalmoscopy simulation may include improving realism and addressing affordability. Although more robust evidence is needed on simulation design efficacy in direct ophthalmoscopy, we have already seen a promising rise in the use of simulation based medical education as an adjunct to traditional teaching methods. With the continuous advances in fidelity and affordability in technology, it appears undeniable that simulation will play an ever-increasing role in ophthalmology education.

Conflicts of Interest: The authors of this manuscript report no competing interests to disclose.

Funding: There are no sources of funding to disclose for this study. **Edited by:** Douglas Archibald (section editor); Marco Zaccagnini (senior section editor); Marcel D'Eon (editor-in-chief)

References

- Vernon S. Eye care and the medical student: where should emphasis be placed in undergraduate ophthalmology? J R Soc Med 1988;81:335-337.
 - https://doi.org/10.1177/014107688808100612
- Fan JC, Sherwin T, McGhee CN. Teaching of ophthalmology in undergraduate curricula: a survey of Australasian and Asian medical schools. *Clin Exp Ophthalmol* 2007;35:310-317. https://doi.org/10.1111/j.1442-9071.2006.01414.x
- Helena B, Miller GC, Henderson J, et al. General practice activity in Australia 2013-14: Sydney University Press, 2014.
- Gurney SP, Makanjuola T, Kutubi M, Parulekar M, Abbott J. How to use...the direct ophthalmoscope. Archives of Disease in Childhood Education and Practice Edition 2018;103:102. https://doi.org/10.1136/archdischild-2016-312378
- Biousse V, Bruce BB, Newman NJ. Ophthalmoscopy in the 21st century: the 2017 H. Houston Merritt Lecture. *Neurol*. 2018;90:167-175.
 - https://doi.org/10.1212/WNL.0000000000004868
- Bruce BB, Bidot S, Hage R, et al. Fundus Photography vs.
 Ophthalmoscopy Outcomes in the Emergency Department (FOTO-ED) Phase III: web-based, in-service training of emergency providers. *Neuroophthalmol*. 2018;42:269-274. https://doi.org/10.1080/01658107.2017.1419368
- Bruce BB, Lamirel C, Wright DW, et al. Nonmydriatic ocular fundus photography in the emergency department. New England J Med. 2011;364:387-389.
 - https://doi.org/10.1056/NEJMc1009733
- Wu EH, Fagan MJ, Reinert SE, Diaz JA. Self-confidence in and perceived utility of the physical examination: a comparison of medical students, residents, and faculty internists. *J Gen Intern Med* 2007;22:1725-30. https://doi.org/10.1007/s11606-007-0409-8
- Holmboe ES. Faculty and the observation of trainees' clinical skills: problems and opportunities. *Acad Med* 2004;79:16-22. https://doi.org/10.1097/00001888-200401000-00006
- 10. Morad Y, Barkana Y, Avni I, Kozer E. Fundus anomalies: what the pediatrician's eye can't see. *International J Quality Health Care* 2004;16:363-365. https://doi.org/10.1093/intqhc/mzh065
- Mottow-Lippa L. Ophthalmology in the medical school curriculum: reestablishing our value and effecting change. *Ophthalmol.* 2009;116:1235-1236. e1. https://doi.org/10.1016/j.ophtha.2009.01.012
- Scott TM, Succar T, Petsoglou C. Ophthalmology teaching in Australian medical schools: a national survey. *Med Teach*. 2022:1-6. https://doi.org/10.1080/0142159X.2022.2072283
- Gostimir M, Sharma RA, Bhatti A. Status of Canadian undergraduate medical education in ophthalmology. Can J Ophthalmol. 2018;53:474-479. https://doi.org/10.1016/j.jcjo.2017.11.015
- Hill S, Dennick R, Amoaku W. Present and future of the undergraduate ophthalmology curriculum: a survey of UK

- medical schools. *Int J Med Educ.* 2017;8:389. https://doi.org/10.5116/ijme.59ac.f69b
- Baylis O, Murray PI, Dayan M. Undergraduate ophthalmology education-a survey of UK medical schools. *Med Teach* 2011;33:468-471. https://doi.org/10.3109/0142159X.2010.540594
- Quillen DA, Harper RA, Haik BG. Medical student education in ophthalmology: crisis and opportunity. *Ophthalmol*. 2005;112:1867-1868.
 https://doi.org/10.1016/j.ophtha.2005.05.005
- 17. Shuttleworth G, Marsh G. How effective is undergraduate and postgraduate teaching in ophthalmology? *Eye* 1997;11:744-750. https://doi.org/10.1038/eye.1997.189
- Gupta RR, Lam WC. Medical students' self-confidence in performing direct ophthalmoscopy in clinical training. Can J Ophthalmol 2006;41:169-74. https://doi.org/10.1139/106-004
- Lopes Filho JB, Leite RA, Leite DA, Castro ARd, Andrade LS. Avaliação dos conhecimentos oftalmológicos básicos em estudantes de Medicina da Universidade Federal do Piauí. Revista Brasileira de Oftalmologia 2011;70:27-31. https://doi.org/10.1590/S0034-72802011000100006
- Schulz C, Moore J, Hassan D, Tamsett E, Smith C. Addressing the 'forgotten art of fundoscopy': evaluation of a novel teaching ophthalmoscope. *Eye* 2016;30:375-384. https://doi.org/10.1038/eye.2015.238
- Chen M, Swinney C, Chen M, Bal M, Nakatsuka A. Comparing the utility of the non-mydriatic fundus camera to the direct ophthalmoscope for medical education. *Hawai'i J Medicine & Public Health* 2015;74:93.
- Gilmour G, McKivigan J. Evaluating medical students' proficiency with a handheld ophthalmoscope: a pilot study. *Adv Med Educ Pract* 2016:33-36. https://doi.org/10.2147/AMEP.S119440
- Milani BY, Majdi M, Green W, et al. The use of peer optic nerve photographs for teaching direct ophthalmoscopy. *Ophthalmol*. 2013;120:761-765.
 https://doi.org/10.1016/j.ophtha.2012.09.020
- Grodin MH, T MARK J, Acree JL, Glaser BM. Ophthalmic surgical training: a curriculum to enhance surgical simulation. *Retina* 2008;28:1509-1514. https://doi.org/10.1097/IAE.0b013e31818464ff
- Larsen P, Stoddart H, Griess M. Ophthalmoscopy using an eye simulator model. *Clinical Teach* 2014;11:99-103. https://doi.org/10.1111/tct.12064
- McCarthy DM, Leonard HR, Vozenilek JA. A new tool for testing and training ophthalmoscopic skills. J Graduate Med Educ. 2012;4:92-96. https://doi.org/10.4300/JGME-D-11-00052.1
- Androwiki JE, Scravoni IA, Ricci LH, Fagundes DJ, Ferraz CA. Evaluation of a simulation tool in ophthalmology: application in teaching funduscopy. *Arquivos Brasileiros de Oftalmologia* 2015;78:36-39. https://doi.org/10.5935/0004-2749.20150010
- Hoeg TB, Sheth BP, Bragg DS, Kivlin JD. Evaluation of a tool to teach medical students direct ophthalmoscopy. WMJ: Official Publication of the State Medical Society of Wisconsin 2009;108:24-26.
- Swanson S, Ku T, Chou C. Assessment of direct ophthalmoscopy teaching using plastic canisters. *Med Educ.* 2011;45:520-521. https://doi.org/10.1111/j.1365-2923.2011.03987.x

- Ricci LH, Ferraz CA. Simulation models applied to practical learning and skill enhancement in direct and indirect ophthalmoscopy: a review. *Arquivos Brasileiros de Oftalmologia* 2014;77:334-338. https://doi.org/10.5935/0004-2749.20140084
- Ricci LH, Ferraz CA. Ophthalmoscopy simulation: advances in training and practice for medical students and young ophthalmologists. *Adv Med Educ Pract*. 2017;8:435-439. https://doi.org/10.2147/AMEP.S108041
- 32. Beckman TJ, Cook DA, Mandrekar JN. What is the validity evidence for assessments of clinical teaching? *J Gen Internal Med.* 2005;20:1159-1164. https://doi.org/10.1111/j.1525-1497.2005.0258.x
- Messick S. Meaning and values in test validation: The science and ethics of assessment. *Educational researcher*. 1989;18:5-11. https://doi.org/10.3102/0013189X018002005
- McGaghie WC, Issenberg SB, Barsuk JH, Wayne DB. A critical review of simulation-based mastery learning with translational outcomes. *Med Teach*. 2014;48:375-385. https://doi.org/10.1111/medu.12391
- Kirkpatrick, D. Great ideas revisited. Techniques for evaluating training programs. Revisiting Kirkpatrick's four level model. Training and Development, 1996;50: 54-59.
- Smidt A, Balandin S, Sigafoos J & Reed V. The Kirkpatrick model: a useful tool for evaluating training outcomes, *J Intell Dev Disabil*. 2009;34:3, 266-274, https://doi.org/10.1080/13668250903093125
- Borgersen NJ, Skou Thomsen AS, Konge L, Sorensen TL, Subhi Y.
 Virtual reality-based proficiency test in direct ophthalmoscopy.
 Acta Opthalmologica 2018;96:e259-e261.
 https://doi.org/10.1111/aos.13546
- Boden KT, Rickmann A, Fries FN, et al. Evaluation of a virtual reality simulator for learning direct ophthalmoscopy in student teaching. *Ophthalmol*. 2020;117:44-49. https://doi.org/10.1007/s00347-019-0909-z
- Deuchler S, Sebode C, Ackermann H, et al. Combination of simulation-based and online learning in ophthalmology: efficiency of simulation in combination with independent online learning within the framework of EyesiNet in student education. *Ophthalmol*. 2022;119:20-29. https://doi.org/10.1007/s00347-020-01313-0
- Howell GL, Chavez G, McCannel CA, et al. Prospective, Randomized trial comparing simulator-based versus traditional teaching of direct ophthalmoscopy for medical students. *Amer J Ophthalmol*. 2022;238:187-196. https://doi.org/10.1016/j.ajo.2021.11.016
- 41. Tso HL, Young J, Yung CW. Comparing Eyesi virtual reality simulator and traditional teaching methods for direct ophthalmoscopy: students' perspectives at Indiana university school of medicine. *J Academic Ophthalmol*. 2021;13:e66-e72. https://doi.org/10.1055/s-0041-1726349
- Akaishi Y, Otaki J, Takahashi O, et al. Validity of direct ophthalmoscopy skill evaluation with ocular fundus examination simulators. *Can J Ophthalmol*. 2014;49:377-381. https://doi.org/10.1016/j.jcjo.2014.06.001
- 43. Bukhari AA. The clinical utility of eye exam simulator in enhancing the competency of family physician residents in screening for diabetic retinopathy. *Saudi Medical J.* 2014;35:1361-1366.

- Larsen PD, Stoddart H, Griess M. Ophthalmoscopy using an eye simulator model. *Clinical Teach*. 2014;11:99-103. https://doi.org/10.1111/tct.12064
- 45. Gupta DK, Kh, ker N, Stacy K, Tatsuoka CM, Preston DC. Utility of combining a simulation-based method with a lecture-based method for fundoscopy training in neurology residency. *JAMA Neurol.* 2017;74:1223-1227. https://doi.org/10.1001/jamaneurol.2017.2073
- Yusuf IH, Ridyard E, Fung THM, Sipkova Z, Patel CK. Integrating retinal simulation with a peer-assessed group OSCE format to teach direct ophthalmoscopy. Can J Ophthalmol. 2017;52:392-397. https://doi.org/10.1016/j.jcjo.2016.11.027
- 47. Dodaro NR, Maxwell DP, Jr. An eye for an eye. A simplified model for teaching. *Arch Ophthalmol* 1995;113:824-826. https://doi.org/10.1001/archopht.1995.01100060150051
- Kelly LP, Garza PS, Bruce BB et al. Teaching ophthalmoscopy to medical students (the TOTeMS Study). *Amer J Ophthalmol*. 2013;156:1056-1061.e10. https://doi.org/10.1016/j.ajo.2013.06.02276.
- Martins TG, Costa ALF, Helene O, et al Training of direct ophthalmoscopy using models. *Clin Teach*. 2017;14:423-426. https://doi.org/10.1111/tct.12641
- 50. Wu C, Luo M, Liu Y, et al. Application of a 3D-printed eye model for teaching direct ophthalmoscopy to undergraduates. *Graefes Arch Clin Experiml Ophthalmol* 2022;260:2361-2368. https://doi.org/10.1007/s00417-021-05538-w
- Swanson SM, Ku T, Chou CL. Assessment of direct ophthalmoscopy teaching using plastic canisters. *Med Educ*. 2011;45:520-521. https://doi.org/10.1111/j.1365-2923.2011.03987.x
- 52. Chung KD, Watzke RC. A simple device for teaching direct ophthalmoscopy to primary care practitioners. *Ameri J Ophthalmol.* 2004;138:501-502. https://doi.org/10.1016/j.ajo.2004.04.009
- Donovan L, Brian G, du Toit R. A device to aid the teaching of retinoscopy in low-resource countries. *British J Ophthalmol*. 2008;92:294-294. https://doi.org/10.1136/bjo.2007.121699
- Levy A, Churchill AJ. Training and testing competence in direct ophthalmoscopy. *Med Educ*. 2003;37:483-484. https://doi.org/10.1046/j.1365-2923.2003.01502 13.x
- Wessels GF, Oeinck C, Guzek JP, Wessels IF. A home-made model eye for teaching retinoscopy. *Ophthalmic Surgery & Lasers* 1995;26:489-491. https://doi.org/10.3928/1542-8877-19950901-19
- Kennedy M, Dobbie A, Timberlake G, Klein R. Improving the teaching and learning of fundoscopy skills: the Timberlake Eye Model. *Educ Primary Care*. 2006;17:63-65. https://doi.org/10.1080/1475990X.2006.11493512
- Wang H, Liao X, Zhang M, Pang CP, Chen H. A simple eye model for objectively assessing the competency of direct ophthalmoscopy. *Eye* 2022;36:1789-1794. https://doi.org/10.1038/s41433-021-01730-8
- Khan MA, Hennessy MP. Prince of Wales Eye Model: A simple and free 3D -printed eye model for simulating fundus examination. *Clin Experim Ophthalmol*. 2021;49:626-627. https://doi.org/10.1111/ceo.13953
- 59. Wilson AS, O'Connor J, Taylor L, Carruthers D. A 3D virtual reality ophthalmoscopy trainer. *Clin Teach* 2017;14:427-431. https://doi.org/10.1111/tct.12646

- 60. Acosta D, Gu D, Uribe-Quevedo A, et al. IMCL Mobile etraining tools for augmented reality eye fundus examination. 2019:83-92. https://doi.org/10.1007/978-3-030-11434-3 13
- Chan M, Uribe-Quevedo A, Kapralos B, et al. A preliminary usability comparison of augmented and virtual reality user interactions for direct ophthalmoscopy. 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH) 2020;NA:1-8. https://doi.org/10.1109/SeGAH49190.2020.9201804
- Cook DA, Hatala R, Brydges R, et al. Technology-enhanced simulation for health professions education: a systematic review and meta-analysis. *Jama*. 2011;306:978-988. https://doi.org/10.1001/jama.2011.1234
- 63. So HY, Chen PP, Wong GKC, Chan TTN. Simulation in medical education. *J Royal College of Physicians of Edinburgh* 2019;49:52-57. https://doi.org/10.4997/jrcpe.2019.112
- Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. *Current opinion in neurobiology* 2005;15:161-167. https://doi.org/10.1016/j.conb.2005.03.004
- Roediger HL, Butler AC. The critical role of retrieval practice in long-term retention. *Trends in cognitive sciences* 2011;15:20-27. https://doi.org/10.1016/j.tics.2010.09.003
- Dunlosky J, Rawson KA, Marsh EJ, Nathan MJ, Willingham DT. Improving students' learning with effective learning techniques: promising directions from cognitive and educational psychology. *Psychol Sci Public interest* 2013;14:4-58. https://doi.org/10.1177/1529100612453266
- ten Cate OTJ, Kusurkar RA, Williams GC. How selfdetermination theory can assist our understanding of the teaching and learning processes in medical education. AMEE Guide No. 59. *Med Teach*. 2011;33:961-973. https://doi.org/10.3109/0142159X.2011.595435
- Paik B, Ngai NT, Rhee J, et al. Effectiveness of simulation models and digital alternatives in training ophthalmoscopy: a systematic review. *Med Teach*. 2025 Feb;47(2):233-248. https://doi.org/10.1080/0142159X.2024.2326112
- Okuda Y, Bryson EO, DeMaria Jr S, et al. The utility of simulation in medical education: what is the evidence? *Mount* Sinai J Med: J Translational Personalized Med. 2009;76:330-343. https://doi.org/10.1002/msj.20127
- Rudolph JW, Simon R, Raemer DB. Which reality matters? Questions on the path to high engagement in healthcare simulation: LWW. 2007:161-163. https://doi.org/10.1097/SIH.0b013e31813d1035
- 71. Bradley P. A simple eye model to objectively assess ophthalmoscopic skills of medical students. *Med Educ.* 1999;33:592-595. https://doi.org/10.1046/j.1365-2923.1999.00370.x
- Kim J, Park J-H, Shin S. Effectiveness of simulation-based nursing education depending on fidelity: a meta-analysis. *BMC Med Educ.* 2016;16:1-8. https://doi.org/10.1186/s12909-016-0672-7
- Kahlenborn C, Sassani JW, Sherrard M, Frankel CA. A mannequin for teaching ocular fundus examination skills. *Arch Ophthalmol.* 1989;107:1725-1726. https://doi.org/10.1001/archopht.1989.01070020807010
- 74. Mackay DD, Garza PS, Bruce BB, et al. Teaching ophthalmoscopy to medical students (TOTeMS) II: a one-year

- retention study. *Am J Ophthalmol* 2014;157:747-8. https://doi.org/10.1016/j.ajo.2013.12.013
- 75. Mahmoud A, Abid F, Ezdini M, et al. The contribution of simulation in training for funduscopic examination. *Tunisie Medicale* 2021;99:1141-1147.
- 76. Miller D. A teaching eye model for ophthalmoscopy. *J Med Educ.* 1981;56:671-672.
 - https://doi.org/10.1097/00001888-198108000-00011
- Penta FB, Kofman S. The effectiveness of simulation devices in teaching selected skills of physical diagnosis. *J Med Educ* 1973;48:442-445. https://doi.org/10.1097/00001888-197305000-00005
- van Velden JS, Cook C, du Toit N, Myer L. Primary health eye care: evaluation of the competence of medical students in performing fundoscopy with the direct ophthalmoscope. South African Fam Pract. 2010;52:341-343. https://doi.org/10.1080/20786204.2010.10874003
- 79. Nguyen M, Quevedo-Uribe A, Kapralos B, et al. An experimental training support framework for eye fundus examination skill development. *Comput Methods Biomech Biomed*. 2019;7:26-36.

https://doi.org/10.1080/21681163.2017.1376708

80. Chan M, Uribe-Quevedo A, Kapralos B, et al. Virtual and augmented reality direct ophthalmoscopy tool: a comparison between interactions methods. *Multimodal Technol Interact* 2021;5:66-NA. https://doi.org/10.3390/mti5110066

Appendix A. Summary of included studies

Reference	Participants	Study Design	Outcome	Simulator	Role of simulation model	Conclusion	Validity	Effectiveness	Kirkpatrick level
Physical									
Akaishi ⁴²	73 medical students, residents and physicians	Prospective single arm cross- sectional study	Surrogate indicators of experience and ability to identify words at the fundus	Eye Examination Simulator (Kyoto Kagaku Co. Ltd., Kyoto, Japan)	Assessment of identification of fundoscopic pathology	Can be used to in assessment to differentiate performers when pupil size is between 2- 3.5mm	Content: N Response process: 0 Internal structure: N Relations to other variables: N Consequences: N	NA	Level 2
Bradley ⁷¹	395 medical students	Prospective single arm cross- sectional study	OSCE Exam scores initially and after 6 months	Tennis ball. Disc, macula, vessels and words painted on the inside	Training students to identify fundus characteristics	Model can be used to assess effectiveness of DO technique	Content: N Response process: 0 Internal structure: N Relations to other variables: N Consequences: N	2	Level 2
Bukhari ⁴³	14 medical students	Prospective single arm cross- sectional study	Cognitive and motor skills at DO and ability to diagnose DR in an OSCE scenario	Eye Examination Simulator (Kyoto Kagaku Co. Ltd., Kyoto, Japan)	Training students to identify fundus pathology	Training on a simulator significantly improved cognitive, motor and diagnostic skills using DO	Content: N Response process: 0 Internal structure: N Relations to other variables: N Consequences: N	2	Level 2
Chung et al. ⁵²	NA	Device description	NA	Plastic cannister (single lumen)	Training students to identify fundus pathology	A simple device, easy to set up and use	Content: N Response process: N Internal structure: N Relations to other variables: N Consequences: 1	1	NA
Dodaro et al. ⁴⁷	NA	Device description	NA	Mannequin head, model eyes with printed fundi	Training students to identify fundus pathology	Should provide a valuable teaching tool in the clinical setting	Content: N Response process: N Internal structure: N Relations to other variables: N Consequences: N	NA	NA
Donovan et al. ⁵³	NA	Device description	NA	Plastic cannister (single modifiable lumen)	Training students to identify fundus pathology	A cost-effective simulator that can simulate fundus pathologies and simulate anterior segment conditions	Content: N Response process: N Internal structure: N Relations to other variables: N Consequences: N	NA	NA
Kahlenborn et al. ⁷³	USA	Device description	NA	Mannequin head with interchangeable fundus slides	Training students to identify fundus pathology	Effective simulation of fundus and clinician-patient relationship	Content: N Response process: N Internal structure: N Relations to other variables: N Consequences: N	NA	NA
Kelly et al. ⁴⁸	119 medical students	Randomised control trial	Post-test on normal and abnormal fundus	Plastic cannister with fundus photos	Training students to identify fundus pathology	Students prefer fundus photos and human	Content: 0 Response process: 0 Internal structure: 0	3	Level 2

Reference	Participants	Study Design	Outcome	Simulator	Role of simulation model	Conclusion	Validity	Effectiveness	Kirkpatrick level
			features, and student preferences	and a 16D convex lens		volunteers over simulators for training	Relations to other variables: 0 Consequences: N		
Kennedy et al. ⁵⁶	8 clinician educators	Prospective single arm cross- sectional study	Focus group evaluation of new model	Timberlake Eye Model	Training students to identify fundus pathology	The Timberlake Eye Model was deemed practical, useful and cost effective	Content: N Response process: N Internal structure: N Relations to other variables: N Consequences: N	1	Level 1
Khan and Hennessy ⁵⁸	NA	Device description	NA	Prince of Wales Eye Model	Training students to identify fundus pathology	3D printed model with area for insertable lens with option for inserting a cartridge with fundus images	Content: N Response process: N Internal structure: N Relations to other variables: N Consequences: N	NA	NA
Larsen et al. ⁴⁴	245 medical students	Prospective single arm cross- sectional study	Self-administered theoretical pretest and post-test scores on student perceptions	Eye Examination Simulator (Kyoto Kagaku Co. Ltd., Kyoto, Japan)	Training students to identify fundus pathology	Simulation improves skill and confidence in DO, which can be applied in clinical practice	Content: N Response process: N Internal structure: N Relations to other variables: 0 Consequences: 0	3	Level 2
Levy ⁵⁴	133 medical students	Prospective single arm cross- sectional study	OSCE scores and survey result	Table tennis ball, with lens and painted fundus in a mannequin head	Assessment of identification of fundoscopic pathology	Model was used effectively in the OSCE scenario	Content: N Response process: N Internal structure: N Relations to other variables: N Consequences: N	2	Level 2
Mackay et al. ⁷⁴	107 medical students	Randomised control trial	Post-test on normal and abnormal fundus features, and student preferences	Plastic cannister with fundus photos and a 16D convex lens	Evaluating correct identification of pathology	Students prefer fundus photos over DO for detecting disorders	Content: N Response process: N Internal structure: N Relations to other variables: N Consequences: N	2	Level 2
Mahmoud et al. ⁷⁵	48 medical students	Prospective single arm cross- sectional study	Post-test MCQ scores and student preferences	Plastic cannister in model head with exchangeable fundi and modifiable pupils	Training students to identify fundus pathology	Simulation training can improve skills and knowledge of DO	Content: N Response process: N Internal structure: N Relations to other variables: N Consequences: N	2	Level 2
Martins et al. ⁴⁹	30 medical students	Prospective single arm cross- sectional study	Identify pathologies in patients	Plastic sphere in a cardboard box	Training students to identify fundus pathology	Simulation was an effective way to practice and gain confidence. Increasing difficulty during the simulation process was beneficial. Students felt safer when performing DO on patients	Content: N Response process: N Internal structure: N Relations to other variables: N Consequences: N	3	Level 3

Reference	Participants	Study Design	Outcome	Simulator	Role of simulation model	Conclusion	Validity	Effectiveness	Kirkpatrick level
McCarthy et	43 resident	Prospective	Quantifiable	Eye Examination	Assessment of	May be suitable for	Content: N	NA	Level 2
al. ²⁶	medical officers	single arm	assessment of	Simulator (Kyoto	identification of	training and	Response process: 0		
		cross-	fundoscopic skills	Kagaku Co. Ltd.,	fundoscopic pathology	assessment, but has	Internal structure: N		
		sectional	and ease of use of	Kyoto, Japan)		lower user satisfaction	Relations to other		
		study	the model				variables: N		
							Consequences: N		
Miller ⁷⁶	NA	Device	NA	Jar with pupil	Training students to	Students appreciated	Content: N	1	NA
		description		aperture and fundus	identify fundus pathology	practice on a simulation	Response process: N		
				pictures		device	Internal structure: N		
							Relations to other		
							variables: N		
							Consequences: N		
Penta et al.77	30 students	Randomised	Post-test scores	Iowa	Training students to	Supplementing	Content: N	1	Level 2
		control trial		ophthalmoscopic	identify fundus pathology	traditional methods	Response process: N		
				model, Bartner eye	, , ,	with simulation can be	Internal structure: N		
				model		effective in in improving	Relations to other		
						students' ability to	variables: N		
						perform DO	Consequences: N		
Swanson et	144 medical	Prospective	Post-test MCQ scores	Four variations of a	Training students to	Simulator was a useful	Content: N	2	Level 2
al. ⁵¹	students, 9	single arm	and student	plastic cannister	identify fundus pathology	adjunct, well received	Response process: N	_	2010.2
	faculty	cross-	preferences	design with	laciting randas patinology	by students, and	Internal structure: N		
	lacally	sectional	p. c. c. c. c. cos	different pupil		improved post-test	Relations to other		
		study		aperture sizes		scores of OD proficiency	variables: 1		
		Study		apertare sizes		Scores or ob proncioney	Consequences: N		
van Velden ⁷⁸	173 medical	Prospective	Ability to visualise	Mannequin head	Assessment of	Model was used	Content: N	1	Level 2
van velaen	students	single arm	the fundus and make	with model eyes	identification of	effectively in the OSCE	Response process: N	_	LCVC1 Z
	Students	cross-	a correct diagnosis	with artificial	fundoscopic pathology	scenario, students	Internal structure: N		
		sectional	a correct diagnosis	corneas and printed	Tundoscopie patriology	needed more DO	Relations to other		
		study		fundi		teaching in pathological	variables: N		
		Study		Tanai		conditions	Consequences: N		
Wang et al. ⁵⁷	76	Prospective	Checklist score and	Plastic ball with	Assessment of	The majority of	Content: N	2	Level 2
wang et al.	ophthalmology	single arm	objective assessment	convex lens and	identification of	students were	Response process: 2	_	Level 2
	residents	cross-over	of DO	painted fundus	fundoscopic pathology	agreeable to using the	Internal structure: N		
	residents	study	01 00	painted fundus	Turidoscopic patriology	simulation model. The	Relations to other		
		study				model can be used in	variables: N		
						assessment and can			
						differentiate between	Consequences: 2		
Wessels et	NA	Device	NA	Camera film case	Training students to	performers May be suitable for	Content: N	NA	NA
al. ⁵⁵	INA		IVA	with variable axial	_	•		INA	INA
di."		description			identify fundus pathology	training and assessment	Response process: N		
				length and			Internal structure: N		
				refractive properties			Relations to other		
							variables: N		
14/	02	Danda	A a a a a a a a a a a a a a a a a a a a	2D maintail	Tagining about 1000	Tarining	Consequences: N	12	Lavel 2
Wu et al.50	92 medical	Randomised	Assessment of ability	3D-printed	Training students to	Training with an eye	Content: N	3	Level 2
	students	control trial	and time taken to	rectangular models	identify the fundus	model improved fundus	Response process: N		
			visualise the fundus	with apertures and		identification rate and	Internal structure: N		
				replaceable fundus		time	Relations to other		
				photographs			variables: N		
							Consequences: N		

Reference	Participants	Study Design	Outcome	Simulator	Role of simulation model	Conclusion	Validity	Effectiveness	Kirkpatrick level
Digital									
Androwiki et al. ²⁷	90 medical students	Randomised control trial	Theory and practical exam scores	Eye Retinopathy Trainer (Adam Rouilly)	Training students to identify fundus characteristics	Simulation group performed statisticaly better than control group	Content: N Response process: 0 Internal structure: N Relations to other variables: N Consequences: N	3	Level 2
Gupta et al. ⁴⁵	48 neurology residents	Randomised control trial	Pretest and post-test scores	Eye Retinopathy Trainer (Adam Rouilly),	Training students to identify fundus pathology	Increase in skills score and comfort levels with DO, with no increase in knowledge, frequency of attempting DO or perceptions of usefulness of DO	Content: 0 Response process: 1 Internal structure: 0 Relations to other variables: N Consequences: N	2	Level 2
Kouzmitcheva et al. ²⁷	17 paediatric residents	Randomised control trial	Post-test on normal and abnormal fundus features, and resident preferences	OphthoSim (OtoSim)	Training students to identify fundus pathology	Simulation improved detection of fundus pathologies compared to control	Content: N Response process: N Internal structure: 0 Relations to other variables: N Consequences: N	1	Level 2
Yusuf et al. ⁴⁶	160 medical students	Randomised control crossover trial	Student perception of educational intervention	Eye Retinopathy Trainer (Adam Rouilly)	Training students to identify the fundus	Retinal simulation together with a peer assessed OSCE is an effective at increasing confidence in students	Content: N Response process: N Internal structure: N Relations to other variables: N Consequences: N	1	Level 1
Virtual reality							1		
Boden et al. ³⁸	34 medical students	Randomised control trial	OSCE Exam scores	EyeSi Direct Ophthalmoscope Simulator (VRmagic, GmbH, Mannheim, Germany)	Training students to identify fundus pathology	Simulation group had statistically higher OSCE scores than the control group, and high satisfaction of students in the simulator group	Content: 0 Response process: N Internal structure: N Relations to other variables: 1 Consequences: 0	2	Level 2
Borgersen et al. ³⁷	13 medical students, 8 ophthalmology consultants	Prospective Validity Study	Validity evidence of a direct ophthalmoscope virtual reality simulator	EyeSi Direct Ophthalmoscope Simulator (VRmagic, GmbH, Mannheim, Germany)	Assessing DO competency in students and consultants	Pass/fail score of 2615 in EyeSi Modules, high internal validity	Content: 1 Response process: 2 Internal structure: 2 Relations to other variables: 2 Consequences: 1	NA	NA
Deuchler et al. ³⁹	86 medical students	Randomised control trial	Pretest and post-test scores	EyeSi Direct Ophthalmoscope Simulator (VRmagic, GmbH, Mannheim, Germany)	Training students to identify fundus pathology	Learning effect is observed with simulator training, but is higher if students train on both a simulator and theory based online platform	Content: 0 Response process: N Internal structure: 0 Relations to other variables: 0 Consequences: 2	2	Level 2
Howell et al. ⁴⁰	33 medical students	Randomised control trial	Assessment on technique and efficacy on human patients	EyeSi Direct Ophthalmoscope Simulator (VRmagic, GmbH, Mannheim, Germany)	Training students to identify fundus pathology	Increased in time spent training and skills scores in simulator group, no statistical difference in knowledge scores.	Content: 0	3	Level 2

Reference	Participants	Study Design	Outcome	Simulator	Role of simulation model	Conclusion	Validity	Effectiveness	Kirkpatrick level
							variables: 1		
							Consequences: N		
Nguyen et al. ⁷⁹	NA	Preliminary usability study	System usability scale scores	HTC Vive	Training students to identify fundus pathology	Simulator was usable but requires improvements	Content: N Response process: 2 Internal structure: 0 Relations to other variables: N Consequences: N	1	Level 1
Tso et al. ⁴¹	31 students	Prospective single arm cross-over study	Survey responses	EyeSi Direct Ophthalmoscope Simulator (VRmagic, GmbH, Mannheim, Germany)	Training students to identify fundus pathology	EyeSi improved students' confidence and was preferred by the majority of students compared to traditional DO teaching methods	Content: N Response process: N Internal structure: N Relations to other variables: N Consequences: N	1	Level 1
Wilson et al. ⁵⁹	15 medical students	Model evaluation and usability study	Davis's Technological Acceptance Model score, usefulness and ease of use	VR headset with gamified training module outlining eye anatomy and DO steps	Training students to identify fundus pathology	VR simulator was perceived to increase understanding of ophthalmoscopy and was relatively easy to use.	Content: N Response process: 0 Internal structure: N Relations to other variables: N Consequences: N	1	Level 1
Augmented rea	lity and Virtual real	ity							
Acosta et al. ⁶⁰	NA	Preliminary usability study	System Usability Scale (SUS)	Unnamed AR simulator and a VR simulator	Training students to identify fundus pathology	Simulator was usable, more useable with a physical fundoscopy simulator, but less useable than the EyeSi	Content: N Response process: N Internal structure: N Relations to other variables: N Consequences: N	NA	Level 1
Chan et al. ⁶¹	10 non-medical students	Prospective single arm cross- sectional study	Ease of use and cognitive load	HTC Vive controller- based examination, Valve Index "Knuckle" controller-based examination, Microsoft HoloLens gesture-based examination	Feasibility study	Simulation models with a physical controller allows has a higher ease of use and lower cognitive load than hand tracking gestures (limited to pinching)	Content: 1 Response process: 1 Internal structure: N Relations to other variables: N Consequences: 2	2	Level 1
Chan et al. ⁸⁰	18 non-medical students	Prospective single arm cross- sectional study	Usability, task difficulty and workload	HTC Vive controller- based examination, Valve Index "Knuckle" controller-based examination, Microsoft HoloLens gesture-based examination, Oculus Quest controller and Oculus Quest hand-tracking system	Feasibility study	Simulation models with a physical controller allows has a higher ease of use while the Oculus Quest's more accurate hand motion capture result in higher usability resulted in higher usability when compared	Content: 0 Response process: 1 Internal structure: N Relations to other variables: N Consequences: 0	2	Level 1