ARCTIC VOL. 76, NO. 3 (SEPTEMBER 2023) P. S1–S8 https://doi.org/10.14430/arctic78205

Traditional Food Consumption and Other Determinants of Exposure for Lead, Cobalt, Manganese, and Hexachlorobenzene in Northern Canada

Mallory Drysdale,¹ Mylène Ratelle,¹ Shannon E. Majowicz,¹ Jeremy Brammer,^{3,5} Mary Gamberg,⁴ Kelly Skinner¹ and Brian Laird^{1,2}

(Received 20 June 2022; accepted in revised form 16 May 2023)

Class	Matrix	Parent compounds	Biomarkers
Metals	Hair	Mercury	Mercury
	Whole Blood and Urine	Aluminium Arsenic Barium Beryllium Cadmium Cesium ^a Chromium Cobalt Copper Gallium Iron ^b Lead Lithium Manganese Mercury Nickel Rubidium ^a Selenium Strontium Thallium Uranium Vanadium Zinc	Aluminum Total Arsenic Total Barium Total Beryllium Total Cadmium Total Cadmium Total Cobalt Total Cobalt Total Copper Total Gallium Total Icad Total Lead Total Lithium Total Manganese Total Mercury Total Mickel Total Rubidium Total Strontium Total Strontium Total Thallium Total Vanadium Total Vanadium Total Zinc
POPs – Flame retardants	Plasma	Polybrominated diphenyl ethers (PBDE)	PBDE , IUPAC # 15 PBDE , IUPAC # 17 PBDE , IUPAC # 25 PBDE , IUPAC # 28 PBDE , IUPAC # 33 PBDE , IUPAC # 33 PBDE , IUPAC # 47 PBDE , IUPAC # 99 PBDE , IUPAC # 100 PBDE , IUPAC # 153
	Plasma	Polybrominated biphenyls (PBB)	PBB, IUPAC # 153
POPs – Pesticides	Plasma	Aldrin	Aldrin
		Chlordane	gamma-Chlordane alpha-Chlordane Oxychlordane cis-Nonachlor trans-Nonachlor
		Lindane	gamma-HCH beta-HCH

TABLE S1. List of analytes and biological matrices for Old Crow biomonitoring project (Drysdale et al., 2021).

¹ School of Public Health Sciences, Faculty of Health, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada

² Corresponding author: brian.laird@uwaterloo.ca

³ Vuntut Gwitchin Government, PO Box 94, Old Crow, Yukon Y0B 1N0, Canada

⁴ Gamberg Consulting, 708 Jarvis Street, Whitehorse, Yukon Y1A 2J2, Canada

⁵ National Wildlife Research Centre, Environment and Climate Change Canada, 1126 Colonel By Drive, Ottawa, Ontario K1A 0H3, Canada

© The Arctic Institute of North America

S2 • M. DRYSDALE et al.

Class	Matrix	Parent compounds	Biomarkers
POPs – Pesticides	Plasma	Hexachlorobenzene	Hexachlorobenzene
		Mirex	Mirex
		DDT	p,p'-DDE p,p'-DDT
		Toxaphene	Parlar no. 26 Parlar no. 50
Lipids	Plasma	Fatty acids	Omega-3 (EPA + DHA) PUFAs N-3, N-6
POPs – Electrical and coolant fluids	Plasma	Polychlorinated biphenyls (PCB)	PCB , Aroclor 1260 PCB , IUPAC # 28 PCB , IUPAC # 52 PCB , IUPAC # 66 PCB , IUPAC # 74 PCB , IUPAC # 101 PCB , IUPAC # 105 PCB , IUPAC # 105 PCB , IUPAC # 105 PCB , IUPAC # 128 PCB , IUPAC # 128 PCB , IUPAC # 138 PCB , IUPAC # 138 PCB , IUPAC # 156 PCB , IUPAC # 156 PCB , IUPAC # 156 PCB , IUPAC # 167 PCB , IUPAC # 167 PCB , IUPAC # 167 PCB , IUPAC # 167 PCB , IUPAC # 178 PCB , IUPAC # 178 PCB , IUPAC # 183 PCB , IUPAC # 183 PCB , IUPAC # 187 PCB , IUPAC # 194 PCB , IUPAC # 201 PCB , IUPAC # 203 PCB , IUPAC # 206

TABLE S1. List of analytes and biological	matrices for Old Crow biomonitori	ng project (Drysdale et a	L. 2021). – <i>continued</i> :

^a Only available in blood samples

- ^b Only available in urine samples
- PUFA: Polyunsaturated fatty acid
- EPA: Eicosapentaenoic acid
- DHA: Docosahexaenoic acid
- HCH: Hexachlorocyclohexane

DDT: Dichlorodiphenyltrichloroethane

DDE: Dichlorodiphenyldichloroethylene

* Other contaminants have been analyzed as part of this study and are not included in this report. These contaminants include perfluoroalkylated substances (Garcia-Barrios et al., 2021) in serum, and dioxins and furans in plasma.

Determinant of exposure	Source	Data type	Key parameter	Criteria for inclusion
Demographics				
Sex	Biomonitoring clinic intake demographics	Binary (Male/Female)	Co, Mn, Pb, HCB	In other biomonitoring studies, Mn, Co, and HCB have been higher in women (Arrebola et al., 2009; Oulhote et al.,
Age	Biomonitoring clinic intake demographics	Continuous	Co, Mn, Pb, HCB	2014; Fort et al., 2015) and Pb is often higher in men (Muntner et al., 2005)
				In other biomonitoring studies, Mn and Co (Health Canada 2013; Oulhote et al., 2014) have been shown to decrease with age, while Pb and HCB often increase (Muntner et al., 2005; Arrebola et al., 2009)
Lifestyle risk factors				
Smoking Status	Risk factors survey (Old Crow), Biomonitoring clinic intake demographics (reference populations)	Binary (smoked in the previous 24 hours)	Co, Mn, Pb, HCB	Smoking cigarettes can increase exposure to metals and HCB, Co, Mn (Caruso et al., 2014; Pappas et al., 2014; Lackmann et al., 2000)
Drinking water source	Risk factors survey*	Binary (sometimes or often drinks untreated river water		Drinking water can be an exposure source for metals, including Co, Pb, Mn (Agency for Toxic Substances and Disease Registry, 1992; Brown et al., 2012; Iyare 2019)
Use of lead ammunition	Risk factors survey*	Binary (sometimes or often uses lead ammunition)	Pb	Eating food hunted using lead ammunition may be a source for Pb exposure (Tsuji et al., 2008)
Vitamin intake	Risk factors survey*	Binary (takes a daily multivitamin)	Co, Mn, Pb	Mn and Co (as part of B12) are components of many multivitamins. Pb absorption can be affected by Ca and Vitamin D status (Sorrell et al., 2013; Knoop et al., 2019)
Traditional food consumption				
Birds	Food frequency questionnaire	Binary (eats the food)	Co, Mn, Pb, HCB	All four parameters have been found at elevated levels in some game birds, and birds can also become contaminated by lead ammunition during hunting (Kuhnlein and Receveur, 2007; Tsuji et al., 2008; Chan et al., 2011)
Berries	Food frequency questionnaire	Binary (eats the food)	Co, Mn, Pb	Berries can contain high levels of metal nutrients (Mn, Co) and become contaminated on the surface by Pb- bearing soils (Manninen and Tankskanen, 1993; Chan et al., 2011)
Moose Organs	Food frequency questionnaire	Binary (eats the food)	Co, Mn, Pb, HCB	Concentrations of all four parameters can accumulate in moose organs (Osdjo and Bignert, 2002; Venalainen et al., 2005; Chan et al., 2011)
Caribou Organs	Food frequency questionnaire	Binary (eats the food)	Co, Mn, Pb, HCB	Concentrations of all four parameters can accumulate in caribou organs (Chan et al., 2011; O'Hara et al., 2005)
Whitefish	Food frequency questionnaire	Binary (eats the food)	Co, Mn, Pb, HCB	This food can be high in trace metals, and fatty tissue can accumulate HCB (Robillard et al., 2002; Kuhnlein and Receveur, 2007; Chan et al., 2011)
Chinook	Food frequency questionnaire	Binary (eats the food)	Co, Mn, Pb, HCB	This food can be high in trace metals, and fatty tissue can accumulate HCB (Kuhnlein and Receveur, 2007; Chan et al., 2011; Kelly et al., 2011)

TABLE S2. Determinants of exposure selected for inclusion in this analysis.

			Old Crow (Drysdale et al., 2021)	Jrow t al., 2021)	Sahtú 1 (Laird et	Sahtú region (Laird et al., 2019)	Dehcho region (Laird et al., 2019)	region al., 2019)	CH (General popula	CHMS (General Canadian population) ¹	F1 (First Biomonitori (Assembly of Fii	FNBI (First Nations Biomonitoring Initiative) (Assembly of First Nations, 2013)
			GM^2	95P³	GM^2	$95P^3$	GM^2	95P³	GM^2	$95P^3$	GM^2	95P3
Whole blood n	u		54	4	12	123	122	2	4596-	4596–6070 ¹	4	473
	Co µ	µg/L	$\begin{array}{ccc} 0.31 & 0.61 \\ (0.28-0.33) & (0.51-0.84) \end{array}$	0.61 (0.51 - 0.84)	<pre>COD ></pre>	< LOD	< LOD	<lod <<="" th=""><th>0.23 (0.21 - 0.24)</th><th>0.40 (0.36 - 0.43)</th><th>NA</th><th>NA</th></lod>	0.23 (0.21 - 0.24)	0.40 (0.36 - 0.43)	NA	NA
	Mn µ	μg/L	12 (11 – 13)	22 (19 – 24)	9.6 (9.1 - 10)	16 (15 – 21)	11 (10 - 12)	22 (18 – 32)	9.8 (9.5 - 10)	15 (14 - 16)	12 (12 – 13)	21 (20-22)
	Рb µ	μg/L	24 (19 – 30)	98 (75 – 140)	26 (23 – 29)	85 (73 – 130)	12 (10 - 14)	47 (32 – 76)	8.1 (7.7 – 8.5)	24 (21 – 28)	12 (11 – 13)	33 (21 – 45)
Plasma	u		54	4	12	123	122	5	16651	551	4	471
	HCB µ	µg/L	$\begin{array}{ccc} 0.10 & 0.43 \\ (0.080-0.12) & (0.31-0.66) \end{array}$	0.43 (0.31 - 0.66)	$\begin{array}{ccc} 0.097 & 0.37 \\ (0.086-0.11) & (0.31-0.59) \end{array}$	0.37 (0.31 - 0.59)	$\begin{array}{ccc} 0.053 & 0.13 \\ (0.048-0.059) & (0.12-0.29) \end{array}$	0.13 (0.12 - 0.29)	$\begin{array}{ccc} 0.05 & 0.17 \\ (0.05-0.06) & (0.14-0.20) \end{array}$	0.17 (0.14 - 0.20)	< LOD	0.14 (0.11-0.16)
	HCB _F	HCB μg/g lipids	14 (12 – 17)	71 (40 – 76)	15 (14 – 17)	54 (47 – 78)	8.7 (8.0 - 9.6)	24 (20 - 48)	9.1 $(8.0 - 10)$	27 (20 – 33)	< LOD <	18 (13 - 24)
Urine	u		44	4	10	100	78	8	6311	11	4	495
	Co µ	µg/L	$\begin{array}{ccc} 0.37 & 1.7 \\ (0.30 - 0.47) & (0.69 - 3.6) \end{array}$	1.7 (0.69 – 3.6)	0.30 (0.25 - 0.35)	1.1 (0.76 – 2.7)	0.37 (0.32 - 0.43)	1.5 (0.91 – 2.0)	0.23 (0.21 - 0.26)	0.97 (0.86 - 1.1)	NA	NA
	Мпµ	μg/L	$\begin{array}{ccc} 0.14 & 1.5 \\ (0.11-0.18) & (0.25-2.5) \end{array}$	1.5 (0.25 - 2.5)	0.16 (0.13 - 0.17)	0.46 (0.35 - 0.79)	0.35 (0.31 - 0.40)	1.2 (0.62 - 12)	< L0D	0.36 (0.32 - 0.4)	<l0d< td=""><td>0.59 (0.27 - 0.92)</td></l0d<>	0.59 (0.27 - 0.92)
	Рb	μg/L	0.68 (0.49 - 0.91)	3.9 (2.1 – 4.1)	0.68 (0.51 - 0.90)	4.5 (3.1 – 7.0)	0.51 (0.42 - 0.64)	2.0 (1.7 – 11)	0.52 (0.49 - 0.55)	1.9 (1.7 – 2.0)	0.51 (0.43 - 0.60)	2.3 (1.5 – 3.1)
	Co µ	μg/g creatinine	$\begin{array}{c} 0.35 \\ (0.30-0.43) \\ 0.56-3.3) \end{array}$	1.8 (0.56 - 3.3)	0.33 (0.32 - 0.42)	$1.1 \\ (0.87 - 20)$	0.41 (0.35 – 0.48)	1.5 (0.93 – 2.3)	0.22 (0.20 - 0.25)	0.88 (0.79 – 0.97)	NA	NA
	Mn µ	μg/g creatinine	$\begin{array}{ccc} 0.13 & 1.7 \\ (0.096 - 0.17) & (0.37 - 2.8) \end{array}$	1.7 (0.37 – 2.8)	0.17 (0.14 - 0.21)	0.77 (0.50 - 4.2)	0.39 (0.32 - 0.48)	1.2 (1.2 – 5.8)	< L0D	0.61 (0.51 - 0.7)	< LOD	0.89 (0.66 - 1.1)
	Рb µ	µg/g creatinine	$\begin{array}{c} 0.64 \\ (0.47-0.87) \end{array}$	3.1 (2.3 – 17)	0.83 (0.66 - 1.1)	5.7 (3.3 – 21)	0.57 (0.48 - 0.68)	2.4 (1.7 – 3.6)	0.48 (0.46 - 0.51)	1.6 (1.4 - 1.8)	0.56 (0.48 - 0.66)	2.2 (1.6–2.8)

[÷] from Cycle 6 of the CHMS (n = 4596) (Health Canada, 2021). Plasma HCB results are from Cycle 1 of the CHMS (n=6070) (Health Canada, 2 GM = Geometric mean. ³ 95P = 95th percentile.

S4 • M. DRYSDALE et al.

TABLE S3. Levels of key biomarkers in Old Crow, Dehcho, and Sahtú populations (> 18 Years).

Determinant of exposure		Blood Mn	Urinary Mn ³	Blood Co	Urinary Co ³	Blood Pb	Urinary Pb ³	Plasma HCB
Smokers (smoked cigarette	es within last 24 hours)	-0.048	- 6.7	-6.0	-35	29	18	32
Consumed a vitamin within	n last 24 hours	-13	-0.48	29*	29	-32	-56*	-0.41
Consumes untreated water	sometimes to often	29*	7.9	-8.4	2.6	120**	110	5.7
Consumes food hunted usi	ng lead ammunition	12	1.4	-14	21	45	78	22
Consumers of the followin	g traditional foods:							
Birds	-	-6.9	29	-47	-5.4	16	38	0.97
Berries		9.6	91	16	82	4.5	-10	5.9
Moose	Bones in soup/stew	1.8	86*	15	25	14	38	35
	Fat	-0.25	55	7.4	7.9	14	15	-6.5
	Kidneys	-3.4	32	6.4	-8.6	35	86	35
	Bone marrow	3.8	-2.7	5.2	6.7	35	62	8.4
	Liver	-7.5	26	16	28	26	91	-3.2
Caribou / Porcupine	Bones in soup/stew	7.2	45	12	16	35	9.6	26
-	Fat	18	35	2.8	4.5	9.4	-16	9.1
	Kidneys	22*	5.7	9.6	-2.5	58*	29	29
	Bone marrow	11	51	5.2	19	13	-11	38
	Liver	6.9	-5.4	14	5.9	7.9	-38	-0.32
Fish	Whitefish	-17	-4.9	28*	14	-51*	-79**	2
	Chinook salmon	2	44	9.4	17	51	22	-4.1

TABLE S4. Percent difference¹ in biomarker concentrations for determinants of exposure, controlling for age and sex in Old Crow $(n = 44, 54)^2$.

* *p* < 0.05 and ** *p* < 0.01.

- Food was eaten by <15% or item not included in community surveys.

¹ A positive value indicates that the participants who ate the specified food, smoked, took a vitamin, or drank untreated water, as indicated, had higher average biomarker levels in the percentage indicated than those who did not. A negative value indicates that the participant who ate the specified food, smoked, took a vitamin, or drank untreated water, as indicated, had lower average biomarker levels in the percentage indicated than those who did not.

 2 n = 44 for urine samples, and n = 54 for blood and plasma samples.

³ creatinine-adjusted.

Determinant of exposure		Blood Mn	Urinary Mn ³	Blood Co	Urinary Co ³	Blood Pb	Urinary Pb ³	Plasma HCB ⁴
Smokers (smoked cigarette	es within last 24 hours)	0.46	-332	_	-319	48**	21	5.9
Consumers of the followin	g traditional foods:							
Birds	0	-3.2	7.6	_	32	12	-6.2	19
Berries		-3.6	24	_	0.21	-1.8	-32	0.69
Moose	Bones in soup/stew	-3.4	32	_	-0.73	-32	12	11
	Fat	9.4	20	_	6.2	7.6	11	-2.9
	Kidneys	6.2	22	_	-15	19	32	32*
	Bone marrow	4	9.4	_	-5.6	12	23	4.2
	Liver	-3.2	-16	_	-11	3.5	9.6	9.4
Caribou / Woodland	Bone marrow	5.4	55	_	11	-16	14	17
	Liver	-15	55	_	22	-28	25	35
Fish	Whitefish	1.3	11	_	25	10	-49	-12
	Lake Trout	-5.8	-16	_	-22	-7.5	-34*	6.7

TABLE S5. Percent difference¹ in biomarker concentrations for determinants of exposure, controlling for age and sex in the Dehcho region $(n = 78, 122)^2$.

* *p* <0.05 and ** *p* <0.01.

- Food was eaten by <15% or item not included in community surveys.

¹ A positive value indicates that the participants who ate the specified food, smoked, took a vitamin, or drank untreated water, as indicated, had higher average biomarker levels in the percentage indicated than those who did not. A negative value indicates that the participant who ate the specified food, smoked, took a vitamin, or drank untreated water, as indicated, had lower average biomarker levels in the percentage indicated than those who did not.

 2 n = 78 for urine samples, and n = 122 for blood and plasma samples.

³ creatinine-adjusted.

Determinant of exposure		Blood Mn	Urinary Mn ³	Blood Co	Urinary Co ³	Blood Pb	Urinary Pb ³	Plasma HCB ⁴
Smokers (smoked cigarettes v	within last 24 hours)	1.4	9.5	_	11	15	110**	14
Consumers of the following t	raditional foods:							
Birds		-15	-2.7	_	-24	62	32	48*
Berries		-0.03	-42	_	-28	-6.7	-59*	19
Moose	Bones in soup/stew	12	-12	_	29	32	134	4.5
	Fat	8.4	0.58	-	11	18	91	8.4
	Kidneys	13	-10	_	21	20	86	7.2
	Bone Marrow	13	-15	_	41	26	66	15
	Liver	16	-38	_	-28	45	51	-4.7
Caribou / Barren-Ground	Bones in soup/stew	4.0	-41	_	-1.1	55	41	16
	Fat	-1.4	-53*	_	-15	41	26	16
	Bone marrow	-5.6	4.7	_	32	13	62	9.6
Caribou / Woodland	Bones in soup/stew	-7.3	-32	_	-1.3	38	58	29
	Fat	-9.4	-28	_	-2.0	35	58	45*
	Kidneys	6.7	-0.89	_	29	51	220	22
	Bone marrow	2.0	29	_	48	48	230*	48**
Fish	Whitefish	-15	14	_	-8.6	58	-25	-10
	Lake Trout	-6.9	38	_	25	14	130	17

TABLE S6. Percent difference¹ in biomarker concentrations for determinants of exposure, controlling for age and sex in the Sahtú region $(n = 100, 123)^2$.

* p < 0.05 and ** p < 0.01.

- Food was eaten by <15% or item not included in community surveys.

¹ A positive value indicates that the participants who ate the specified food, smoked, took a vitamin, or drank untreated water, as indicated, had higher average biomarker levels in the percentage indicated than those who did not. A negative value indicates that the participant who ate the specified food, smoked, took a vitamin, or drank untreated water, as indicated, had lower average biomarker levels in the percentage indicated than those who did not.

 2 n = 100 for urine samples, and n = 123 for blood and plasma samples.

³ creatinine-adjusted.

Determinant of exposure		Blood Mn	Urinary Mn ³	Blood Co	Urinary Co ³	Blood Pb	Urinary Pb ³	Plasma HCB
Smokers (smoked cigarettes v	within last 24 hours)	5.0	16	_	3.5	22*	51**	11
Consumers of the following t	raditional foods:							
Birds		3.0	24	-	-1.8	9.7	18	12
Berries		8.4	-5.8	_	-9.0	-2.3	-41*	3.5
Moose	Bones in soup/stew	1.5	26	-	14	35*	45	23*
	Fat	5.9	35	_	7.9	11	26	-0.39
	Kidneys	7.2	23	_	-2.5	14	55*	16
	Bone marrow	5.9	26	_	7.9	8.1	38	0.51
	Liver	0.74	11	_	-8.0	1.5	25	-8.6
Caribou / Barren-Ground	Bones in soup/stew	5.9	-31*	_	-2.5	74**	18	51**
	Fat	13	-38**	_	-8.6	58**	6.9	38**
	Bone marrow	7.9	-22	_	2.2	51**	14	51**
Caribou / Woodland	Bones in soup/stew	-12	-17	_	7.1	38*	35	55**
	Fat	-13	-28	_	7.4	29	23	58**
	Kidneys	-10	-8.6	_	17	29	70	32*
	Bone marrow	-3.0	38	_	26	26	91*	45**
Fish	Whitefish	-9.2	32	_	-0.89	-9.6	-52*	-13
	Lake Trout	2.0	-2.1	_	17	51	22	-4.3

TABLE S7. Percent difference¹ in biomarker concentrations for determinants of exposure, controlling for age and sex in pooled participating communities (n = 222, 229)².

* p < 0.05 and ** p < 0.01.

- Food was eaten by <15% or item not included in community surveys.

¹ A positive value indicates that the participants who ate the specified food, smoked, took a vitamin, or drank untreated water, as indicated, had higher average biomarker levels in the percentage indicated than those who did not. A negative value indicates that the participant who ate the specified food, smoked, took a vitamin, or drank untreated water, as indicated, had lower average biomarker levels in the percentage indicated than those who did not.

 2 n = 222 for urine samples, and n = 299 for blood and plasma samples.

³ creatinine-adjusted.