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Interactive Effects of Environmental Conditions and Contaminants on

Incubation Behaviour in an Arctic Seabird

by Reyd Smith

INTRODUCTION

resulted in widespread abiotic environmental shifts that

affect many ecosystem dynamics (IPCC, 2019). These
shifts include rising air and ocean temperatures (Scavia
et al., 2002; Portner and Peck, 2010), changes in wind and
ocean circulation (Hayward, 1997), a reduction of sea ice
(Johannessen et al., 2004; Hoegh-Guldberg and Bruno,
2010; IPCC, 2019), and an elevated release of contaminants
into the environment including harmful metals such as
mercury (Dietz et al., 2009; Liu et al., 2012). Due to these
extreme human-driven changes in recent years, Arctic
systems in particular are increasingly impacted by these
stressors that show amplification in Arctic regions (Serreze
and Barry, 2011; Descamps et al., 2017; Serreze and Meier,
2018). These changes influence a multitude of ecosystem
and population dynamics including food web characteristics
such as prey availability and selection (Frederiksen et
al., 2006), as well as individual reproductive success and
survival (Bustnes et al., 2001; Visser et al., 2009; Durant
et al., 2010; Nord and Nilsson, 2011; Tartu et al., 2016).
Importantly, a combined exposure to multiple stressors
concurrently, such as contaminants and climate change,
is expected to cause amplified impacts on individuals,
however, is an area requiring more investigation. My
research examines the potential interactive effects of varied
temperature and wind exposure, in combination with
mercury levels, on the incubation behaviour of Common
Eider (Somateria mollissima) at Mitivik (East Bay Island),
Southampton Island, Nunavut.

I NCREASED HUMAN ACTIVITY IN RECENT DECADES has

Mercury as an Endocrine Disrupting Contaminant

Contaminant concentrations are increasing in the
Arctic through long-range transport towards the poles
by air, oceans, and food-web interactions, influencing
many aspects of Arctic life (Macdonald et al., 2000;
Pratte et al., 2015). Arctic marine environments are
particularly at risk of elevated contaminants transport and
biomagnification in marine food webs (Macdonald et al.,
2000; Jeger et al., 2009). One contaminant in particular,
mercury, is stored in animal tissues at higher levels than
is found in the environment (Wiener et al., 2003) and is
found elevated in higher trophic levels as it is one of few
metals that biomagnifies throughout food webs (Campbell
et al., 2005). Mercury is distributed around the globe
by means of oceanic and atmospheric currents, as well
as through integration into food web dynamics, where
it is accumulated by individuals and can interfere with

neurological, endocrine, and reproductive systems (Bustnes
et al., 2001; Ottinger et al., 2015; Pratte et al., 2015).
Although mercury is found naturally in the environment
through processes such as volcanic eruptions, half of
the mercury currently found in the environment stems
from anthropogenic sources (Liu et al., 2012) where it is
discharged in increasingly large amounts through industrial
processes (Dietz et al., 2009) that release approximately
5000 tons of mercury into the environment annually (Liu et
al., 2012). While North American and European emissions
are decreasing, the global decrease is being slowed as other
countries are contributing increasing amounts (Zhang et al.,
2015; Zhang et al., 2016).

Mercury has been shown to have a large diversity of
effects across multiple vertebrate taxa (Muir et al., 1992;
Colborn et al., 1993). In birds, mercury has been shown
to have widespread adverse effects on many aspects
of behaviour, neurology, physiology, and reproduction
(Boening, 2000; Seewagen, 2010). For example, elevated
mercury levels have been correlated with decreases in
the likeliness to breed in Black-legged Kittiwakes (Rissa
tridactyla) (Tartu et al., 2013). Mechanistically, these
mercury-related reductions in breeding propensity have
been linked with reductions in key reproductive hormones,
such as luteinizing hormone, which is involved in the
subsequent release of sex hormones (i.e., estrogens) and
therefore successful growth of gonadal tissues (Tartu et al.,
2013). Studies have also indicated that elevated mercury
can impact later stages of breeding in birds, such as
incubation behaviour via decreased incubation consistency
(i.e. increased on and off bout duration) and decreased
incubation temperatures (Bustnes et al., 2001; Fisher et
al., 2006). These effects are potentially mediated by the
impacts of contaminants such as mercury on prolactin
(PRL), a hormone involved in parental egg and chick
attachment (Tartu et al., 2016). Mercury has already been
shown to impair reproductive performance by disrupting
PRL secretion in Arctic Black-legged Kittiwakes (Tartu et
al., 2016).

Climate Change Induced Increases in Ambient
Temperature in the Arctic

Climate change is impacting Arctic regions through
alterations in sea ice cover, increased frequency, severity
and unpredictability of weather systems, as well as
elevated ambient temperatures reaching almost twice the
global average (Descamps et al., 2017; Serreze and Meier,
2018). These alterations in environmental conditions
occur notably in Arctic systems because of short breeding



542 « INFONORTH

seasons at extreme latitudes as well as differences in annual
prey production (Martin and Wiebe, 2004). In addition,
given the current rapid rate of change, Arctic species may
no longer be as proficient at adapting to and anticipating
the sometimes severe inter-annual climactic variability
(Stempniewicz, et al., 2007; Ceia and Ramos, 2015).

Human-induced climate change has resulted in rising
ambient temperature trends and greater temperature
extremes globally in recent decades (Meehl et al., 2000).
These shifts in climate patterns are indirectly impacting
higher trophic level species via profound alterations
to trophic dynamics (Frederiksen et al., 2006), ocean
chemistry (Solomon et al., 2009), changes in predator
regimes (Smith et al., 2010; Iverson et al., 2014; Prop
et al., 2015), and mismatch in phenology of organisms
(Crick, 2004; Descamps et al., 2017). Importantly, elevated
ambient temperatures have been shown to directly
impact avian reproduction through advancement of lay
dates in songbird species (Visser et al., 2009), along with
accelerated incubation periods and embryonic growth
(Nord and Nilsson, 2011; Durant et al., 2010), and even
decreased incubation attentiveness (Martin and Camfield,
2009). In addition, birds that are exposed to less wind
during incubation due to nest shelter installation have been
shown to have a reduced incubation effort (measured as
body mass loss) than those exposed to higher winds due to
increased effort to warm their clutch (Hoyvik Hilde et al.,
2016). However, a decrease in winds during periods where
there are extreme elevated temperatures may exacerbate
incubation effort due to birds exceeding their thermal
neutral zones (Fast et al., 2007).

Importance of Taking a Multiple Stressor Approach

Although individual stressors such as contaminants or
climate change are resulting in large shifts in ecosystems,
wildlife are currently experiencing these multiple sources
of anthropogenic change at a continually increasing rate
(Vinebrooke et al., 2004; Munns, 2006). Although we
expect individual stressors to have interactive effects, few
studies have examined how multiple, cumulative stressors
impact key mechanisms at the heart of reproductive
performance and fitness (Crain et al., 2008), especially in
highly understudied systems such as the Arctic. Compared
to single stressors examined in isolation, multiple stressors
are expected to contribute to synergistic or additive
impacts on organisms, increasing overall vulnerability
to environmental change, especially in systems already
sensitive to change, such as the Arctic (Vinebrooke et
al., 2004; Schindler and Smol, 2006). Importantly, the
combined, synergistic effects of these stressors are now
expected to be a ‘worst-case scenario’ for Arctic species
(Jenssen, 2006). For example, models combining sea-
surface temperature as a marker for climate change,
predicted reductions in reproductive investment as a
result of pollution levels, and predicted predation have
suggested that a multiple stressor system with climate

change and contaminants is increasingly likely to cause
extinctions in Arctic breeding seabirds compared to single
stressor scenarios (Bardsen et al., 2018). However, these
interactions are currently poorly understood, and more
importantly have not been tested empirically, especially in
relation to the indirect effects of contaminants and climate
change mediated via the mother’s incubation behaviour.
As such, empirical investigations examining how multiple
simultaneous factors may directly and indirectly impact
breeding decisions will be key to understanding how
multiple stressors ultimately affect offspring recruitment in
long-lived, low fecundity Arctic breeding seabird species
(Sandvik and Erikstad, 2008; Béardsen et al., 2018).

RESEARCH APPROACH

Our overall goal was to examine the interactive
effects of environmental conditions and contaminants
on incubation behaviour from early to late stages. For
this research project, we are studying the Common Eider
(Somateria mollissima) a long-lived, migratory, colonially-
nesting seaduck with breeding populations across the
circumpolar Arctic (Mosbech et al., 2006; Hennin et al.,
2015). Female eiders undergo a 24—26 day incubation fast
(Hanssen et al., 2002; Bottitta et al., 2003; Sénéchal et al.,
2011), during which time contaminants accumulated in a
female’s lipid and protein stores, such as organochlorines
(Bustnes et al., 2010) and mercury (Wayland et al., 2005),
can increase in the blood stream due to mobilization of
internal resources. The elevation of contaminants in the
blood may potentially interfere with reproductive hormones
such as PRL, which can impact incubation decisions (i.e.,
incubation consistency, willingness to abandon during
acute stressors; Tartu et al., 2016). This effect may be
amplified due to the environmental conditions a hen is
exposed to while incubating (Fast et al., 2007). However,
to date the release of mercury has not been studied in
incubating females to examine the impacts of mercury on
incubation behaviour (Peakall et al., 1980, Kubiak et al.,
1989). More importantly, aside from population modelling,
none of these contaminants’ effects have been looked at
within the multiple stressor framework of environmental
stressors such as temperature, which may exasperate these
effects (Bardsen et al., 2018).

Common Eider nests at the Mitivik colony (East Bay
Island; 64°02'N, 81°47'W; Fig. 1) were examined from late
June to early July in 2018 (n = 31) and 2019 (n = 31). We
deployed monitoring equipment on each nest, consisting
of a trail camera (Browning 2018 Strike Force Pro) placed
1-metre away from the nest cup to collect motion-activated
footage and a nest temperature probe (Tinytag® Plus 2)
in the middle of the clutch from underneath to record nest
temperature every minute for the duration of incubation
(Figs. 2, 3). Nest temperature provides noninvasive and
remotely collected data on the hen’s movement on her nest,
her incubation behaviour. To collect environmental metrics,



FIG. 1. Common Eiders at the Mitivik (East Bay Island) research
station (pictured above on July 2018) were studied in the
summers of 2018 and 2019 to help determine the impacts of
multiple stressors.

FIG. 2. Graduate students Reyd Smith (left) and Erica Geldart
(right) deploying incubation and temperature monitoring
equipment on a common eider nest at Mitivik (East Bay Island),
Nunavut in June, 2019 (Photo credit: Christophe Boyer).

temperature and light pendants (HOBO Pendant® MX2201
and 64K), we placed ~ 0.5 m away at nest level to determine
each hen’s temperature and sun exposure (amplifies the
heat a hen is exposed to; Figs. 2, 3). A total of five Kestrel
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5500 weather meters were placed on blinds around Mitivik
at approximately 3 m off the ground to collect general
aboveground temperature and wind across the island (Fig.
3). Incubation behaviour over 24-hour periods during early
(days 4—7), middle (days 12—15), and late (days 20—-23)
stages were quantified for each hen, whenever possible,
using nest temperature data via Tinytag probes and
validated using camera footage data (length of continuous
incubation, number of movements on the nest). To quantify
the relative amount of mercury a hen may be exposed to in
a noninvasive manner, we collected the first laid egg from
each nest being monitored and analyzed both the yolk and
albumen for total mercury concentrations (Fig. 3). Egg
mercury has been shown to be correlated to the amount of
mercury in a bird’s blood during laying; hence can be used
as a proxy for relative mercury levels (Evers et al., 2003;
Brasso et al., 2010). Eggs removed were replaced with a
common eider egg from a nearby nest to ensure clutch size
consistency (Fig. 3). Day of incubation was determined by
candling the first-laid egg upon collection to get egg age,
therefore lay date.

For this study, we predicted that females with higher egg
mercury load that are concurrently faced with increased air
temperature exposure and lower winds will have the lowest
incubation consistency and that this effect will increase
as a female progresses though early to late incubation.
Further, we also expect females with a higher mercury load
and exposure to elevated air temperatures will have lower
breeding success because of earlier predation and nest
failure rate.

PRELIMINARY RESULTS
Incubation Behaviour

While analysis of incubation behaviour is still underway,
results currently show a wide range in individual eider
behaviour on the nest. Average stationary time over 24
hours ranges from 37 minutes (low consistency) to 77
minutes (high consistency) with an average of 58 minutes.
Movements on the nest over 24 hours, where a hen stands
up and shifts position, ranged from 42 (low consistency)
to 17 (high consistency), with an average of 24. The large
range seen in eider incubation behaviour will allow us to
compare how consistent a hen’s behaviour is relative to
her individual mercury levels and thermal environmental
conditions.

Egg Mercury Content

Preliminary results of egg mercury content show an
average for both 2018 and 2019 of 0.068 ug/g dry weight
(dw) in yolk (range 0.022-0.191 ug/g dw), and 2.041 ug/g
dw in albumen (range 2.041—-4.290 ug/g dw). Given eiders
have an average egg yolk:albumen ratio of 1:1 (Swennen
and Van der Meer, 1995), calculating an egg homogenate
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FIG. 3. Incubating Common Eider hen (left) with diagram of incubation and weather monitoring equipment deployed on eider nests
(right). Equipment included an ambient temperature recorded (HOBQO) and weather meter (Kestrel) to determine temperatures and
wind speed, a trail camera (Browning) and nest temperature recorded (Tiny Tag) to gather incubation behaviour, and collection of
the first-laid egg, with replacement egg from another nest, to obtain a proxy for hen mercury levels.

from our yolk and albumen results (yolk*0.5+albumen*0.5)
show an average of 1.054 ug/g dw (range 0.313-2.241 ug/g
dw). These values are above levels seen previously at this
site in 2008 (0.501ug/g dw, range 0.373—0.583; Akearok et
al., 2010) and provide a wide range of eider mercury proxies
to compare to incubation behaviour.

Temperature Metrics

Air temperatures and wind speeds at eider nest level also
show a wide variation at both inter- and intra- nest levels.
At-nest temperatures determined via HOBO pendants show
a large range in temperatures over 24 hours, using one hen
for example showing a range of 0°C at night to over 40°C
during the day, with another hen on the same day ranging
from —1°C to 35°C at different times of the day due to
shading differences (rocks, blinds, natural topography).
Temperatures collected from the at-nest HOBOs showed
higher temperatures than kestrels collecting weather data,
with over 20°C difference at the same time due to heat
amplification by surrounding rocks and the dark surface of
the HOBO, similar to that of the dark eider hen. Thus, the
large variation in recorded at-nest and weather temperatures
will allow us to compare exposed heat, in combination with
relative mercury levels, to a hen’s incubation behaviour.

SIGNIFICANCE

Although we expect these individual stressors, such as
mercury and thermal stress, to have significant effects, few
studies have examined how multiple, cumulative stressors
impact key mechanisms such as behaviours that are at the
heart of reproductive performance and fitness (Crain et al.,
2008). Compared to single stressors examined in isolation,
multiple stressors are expected to contribute to amplified
impacts, increasing overall vulnerability to environmental

change (Schindler and Smol, 2006). Models combining
sea-surface temperature as a marker for climate change,
predicted reductions in reproductive investment as a
result of pollution, and predation have suggested that the
multiple stressor system of climate change, contaminants
and predation is increasingly likely to cause extinctions
in Arctic-breeding seabirds compared to single stressor
scenarios (Bardsen et al., 2018). However, these interactions
are currently poorly understood, and more importantly,
have not been tested empirically. As such, empirical
investigations examining how simultaneous factors may
directly and indirectly impact behaviour will be key to
understanding how multiple stressors ultimately affect
offspring recruitment in long-lived, low fecundity Arctic
breeding seabirds (Bardsen et al., 2018).
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