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Bioconditioning of Arctic Waters and Stimulation of Arctic Phytoplankton
by Sea Ice Algae: Vulnerability to Increased Light
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ABSTRACT. Arctic sea ice algae produce extracellular organic products, which, as bioconditioners of seawater, may stimulate 
early summer growth of pelagic, under-sea-ice phytoplankton in low light and low temperature conditions. Sea ice algae are 
inhibited or decline in numbers if prematurely exposed to high light conditions, thereby reducing their ability to produce 
bioconditioners. As climate change creates an early reduction or removal of snow and sea ice cover, the result may be a 
decrease in primary phytoplankton production. 
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RÉSUMÉ. Les algues de la glace de mer de l’Arctique produisent des matières organiques extracellulaires. À titre de 
bioconditionneurs de l’eau de mer, elles peuvent stimuler la croissance estivale précoce de phytoplancton pélagique sous la 
glace de mer par basse température et faible luminosité. La quantité d’algues de glace de mer est freinée ou diminuée en 
présence prématurée de forte luminosité, ce qui diminue leur aptitude à produire des bioconditionneurs. Puisque le changement 
climatique donne lieu à la réduction ou au retrait précoce de la couverture de neige et de glace de mer, cela pourrait entraîner la 
diminution de la production du phytoplancton primaire. 
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INTRODUCTION

As the reduction of Arctic snow and sea ice thickness, 
extent, and duration accelerates (e.g., Stroeve et al., 2012), 
scientists have speculated on the consequences for marine 
parameters, particularly increased light penetration on 
primary production. A number of papers (e.g., Arrigo, 
2013; Codispotti et al., 2013; Lowry et al., 2014) have 
suggested increased primary production as a result of 
greater light penetration. But modeling by Tedesco et al. 
(2012) suggested that seas with less snow and ice cover and 
increased light penetration would become less productive 
and shift to oligotrophic conditions. Leu et al. (2011, 2016) 
suggested sea ice algae might be exposed to detrimentally 
high irradiance levels with adverse consequences for their 
physiology and biochemical composition. Kvernvik et 
al. (2019) found that high radiation caused dysfunctional 
photophysiology and non-vital cells in ice algae. But 
Galindo et al. (2017) proposed a “photoprotective” capacity 
of ice algae in high radiation.

A review of sea ice ecosystems (Arrigo, 2014) considered 
important linkages between sea ice ecosystems and pelagic 
habitats, including processes such as trophic interactions 
and particle export. It does not consider the possibility of 
bioconditioning (in the sense of Barber and Ryther, 1969, 
summarized below) by organic excretions of sea ice algae 

that may stimulate Arctic phytoplankton productivity. The 
hypothesis that increased light resulting from reduced snow 
and ice cover may adversely affect bioconditioning and 
thereby reduce phytoplankton productivity is the focus of 
this note.

Primary production in Arctic seas is dependent upon 
both sea ice algae and phytoplankton. While ice algae 
have been considered a small proportion of total primary 
production (e.g., Kohlbach et al., 2016), Matrai and 
Apollonio (2013) found that ice algae may contribute 
50% – 90% of total primary production in the central 
Arctic Ocean and in adjacent seas in the Canadian Arctic 
archipelago. Consideration of the effects of increased light 
penetration as a result of snow and ice reduction should 
therefore include both ice algae and phytoplankton. Leu 
et al. (2011) and Tremblay et al. (2015) noted the need for 
more studies on the relationship between ice algae and 
phytoplankton. Arrigo (2014) suggested that because 
high ice algal biomasses may absorb a large fraction 
of light, phytoplankton blooms must wait until the ice 
algae population has subsided. Based on model analyses, 
Mortensen et al. (2017) suggested that the timing and 
magnitude of under-ice phytoplankton is affected by the 
timing of seeding of ice algae to the plankton population 
and by the magnitude of nutrient drawdowns from earlier 
ice algal blooms. Nitrate, reduced by ice algae drawdown in 
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Jones Sound in 1962, had been fully restored to maximum 
annual values by 26 May, a month before the beginning 
of the phytoplankton increase (Apollonio and Townsend, 
2011). Data from Resolute Passage (Lancaster Sound) 
show a similar pattern of nitrate drawdown and restoration 
(Matrai and Apollonio, 2013). These data suggest that the 
initiations of the phytoplankton blooms were not delayed by 
nitrate deficiency.

Underwood et al. (2019:170) noted, “Melting FYI [first 
year ice] provides a strong seasonal pulse of dissolved 
organic matter (DOM) into surface waters; however, 
the biological impact of this DOM is unknown.” It is 
possible that before bioconditions are right to facilitate an 
early summer Arctic phytoplankton bloom in sub-zero 
temperatures and low light, the organic compounds, such 
as dissolved carbon (DOC) and exopolymeric substances 
produced and excreted by ice algae must be flushed into 
underlying sea by melting snow or ice. 

DISCUSSION

My hypothesis is that the metabolism and excretions of 
DOC or DOM controlled and stimulated the timing and 
magnitude of principal annual phytoplankton blooms that 
occurred under snow-free but intact sea ice in the 1960s 
(Apollonio and Matrai, 2011). These blooms happened 
decades prior to the presently accelerating reductions 
of snow and ice. I further suggest that the increased light 
penetration of recent years could be detrimental to the 
control and stimulation of phytoplankton production.

Summarized here are the observations leading to this 
suggestion. High levels of chlorophyll (up to 1460 mg m-3) 
were found in the bottom of intact, snow-covered sea ice 
(± 2 m thick) in Jones Sound, Arctic Canada, and in very 
low light levels (≤ 1% of surface values) in the springs and 
early summers of 1961 – 63 (Apollonio, 1961, 1965). It bears 
noting that sea ice chlorophyll has been found in higher 
light intensities (e.g., Gradinger, 2009), but it is possible 
that it was the remnants of higher concentrations produced 
under minimal radiation. The high ratio of chlorophyll c to 
chlorophyll a in ice algae (Arrigo, 2014) is an indication and 
adaptation to blue light (Strickland, 1960; Ehn et al., 2008), 
which is found under snow and sea ice cover.

Areas of ice in Jones Sound in 1961 – 63 were artificially 
cleared of snow (Apollonio, 1961, 1965), with the 
expectation that increased light intensities would result 
in increased chlorophyll. In fact, chlorophyll was greatly 
reduced (by ± 80% – 90%) or disappeared, while adjacent 
snow-covered areas continued to show high levels of 
chlorophyll (see also Lund-Hansen et al., 2014 for similar 
results, whether from ice algal emigration or photodamage). 
Chlorophyll in all Jones Sound ice disappeared when the 
snow cover melted. Shortly thereafter, within 30 days 
from ice algae peaks to phytoplankton chlorophyll peaks 
and under snow-free but intact sea ice conditions, the 
phytoplankton bloom began and reached its highest annual 

values each year (Apollonio and Matrai, 2011). This is in 
contrast to the 45 – 90 days between peaks of sympagic 
and pelagic production for the years 1998 – 2007 noted by 
Rubao et al. (2013), which suggests that this delay in recent 
years might be a result of reduced snow and ice cover and 
reduced bioconditioning.

Mague et al. (1980) showed that the difference between 
gross and net microalgae photosynthesis is a source of 
DOC, and that extracellular leakage or excretion of DOC is 
a natural function of healthy cells. In 1959, phytoplankton 
algae in coastal waters off northern Ellesmere Island, in 
Dumbell Bay in the Arctic Ocean, showed substantial and 
increasing differences between gross and net photosynthesis 
under increasing light intensities (Apollonio, 1980). Similar 
results were found in Jones Sound in 1961 – 63 (Apollonio 
and Matrai, 2011). It is reasonable to assume that ice algae 
would show the same photosynthetic reaction to increasing 
light as does phytoplankton. Smith et al. (1997:71) found 
“extremely high values” of DOC (up to 49 mg m-3) under 
4 – 8 cm of snow and concluded that the DOC originated 
from ice algae. Arrigo (2014) reported that the proportion 
of excreted photosynthate increases under high light 
stress, as is implied in Apollonio (1980: Fig. 3c, d). Thus, 
ice algae exposed to much higher light under newly snow-
free ice would be expected to excrete DOC. In addition, 
Ignatiades and Fogg (1973) proposed that organic materials 
were excreted from microalgae at a stable growth stage and 
when nutrients were depleted, as was the case in Dumbell 
Bay and in Jones Sound (Apollonio, 1980: Fig. 2; Apollonio 
and Matrai, 2011: Fig. 2). Dominant ice algae in the Arctic 
Basin produce and release extensive DOC believed to be 
a consequence of nitrate deficiency of algal physiology 
(Gosselin et al., 1997; Smith et al., 1997). Extracellular 
release of DOC by ice algae may thus come from excess 
light stress and nutrient deficiencies, both of which would 
be characteristics of the end of the normal ice-algal growing 
season bloom, which is characterized by increased light 
penetration as snow cover disappears from sea ice.

Barber and Ryther (1969) discussed the bioconditioning 
role of natural agents such as DOC in enhancing the 
photosynthesis of microalgae arising from dark, cold depths 
into the euphotic zone of temperate upwelling regions. They 
suggested that an effect of the natural agents may be to act 
as ligands or chelators affecting the availability of essential 
trace elements such as iron or to suppress the impact of 
toxic metals such as copper (Sunda, 1994). Barber and 
Ryther (1969) noted that given equal amounts of light and 
inorganic nutrients (e.g., nitrate), two samples of seawater 
may exhibit vastly different abilities to support the growth 
of marine organisms, depending on their content of trace 
elements or bioconditioners. 

It was inferred from the report of Barber and Ryther 
(1969) that an analogous situation might be operative in 
Arctic waters. Organic matter produced by ice algae and 
released from melting sea ice could act as a bioconditioner 
for phytoplankton emerging from dark, cold waters under 
snow cover and sea ice into spring sunlight. Experiments 
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to test this hypothesis were carried out on 20 occasions 
in May and June 1986 in Jones Sound (Apollonio et al., 
2002), wherein added trace metals and chelators (EDTA) 
and dissolved organic matter from the bottom of the sea 
ice stimulated phytoplankton photosynthesis by 119% (sea 
ice DOC), 166% (EDTA), and 184% (trace metals) above 
untreated phytoplankton sample controls. Bioconditioning 
of phytoplankton by ice algae was thus clearly implied.

The implication of all these summarized observations 
is that ice algae are adapted to and flourish naturally 
under very low light intensities. Upon exposure to high 
light intensities and nutrient depletions or both, ice algae 
produce and excrete DOC. As a bioconditioner in sea 
water, the DOC then stimulates the early summer growth 
of phytoplankton even in low temperatures and low light 
intensities. But if ice algae growth is curtailed by early 
reduction of snow and ice cover and premature and elevated 
early spring light intensities, then there will be less ice 
algae, less bioconditioning, and less primary plankton 
productivity, at least in those Arctic waters, such as the 
Canadian Basin that have low spring DOC content. Arctic 
waters that have higher spring DOC content such as the 
Chukchi Shelf (Mathis et al., 2007) may not exhibit this 
stimulation of pelagic phytoplankton by sea ice excretions. 

DOC excreted or leaked from ice algae might be 
expected to accumulate at the halocline just below melting 
sea ice. The appearance of a halocline flora (Apollonio, 
1985), which was found at the halocline about 2 m under 
the ice at two high Arctic locations, began in Dumbell 
Bay in 1959 under intact but melting ice and persisted for 
three weeks (Apollonio, 1980). It began in Jones Sound 
in 1961 and 1963 within 7 – 15 days of the beginning of 
snowmelt (Apollonio and Matrai, 2011). Similar halocline 
flora found in Frobisher Bay, Baffin Island, preceded the 
main phytoplankton bloom and persisted for several days 
(McLaren, 1969). These flora may be examples of pelagic 
algae stimulated by bioconditioning.

The hypothesis that higher light penetration in early 
spring may inhibit phytoplankton productivity by reducing 
bioconditioning has implications for much of the Arctic 
marine food web. Higher trophic levels, particularly the 
abundant copepod species grazing on both ice algae and 
phytoplankton, are likely to be sensitive to the timing of 
the blooms as well as the time lag between them (Rubao et 
al., 2013; Leu et al., 2015). Even a small mismatch between 
phytoplankton blooms and zooplankton reproductive cycles 
can have consequences for the entire lipid-driven Arctic 
marine ecosystem (Hill et al., 2018). Further testing of the 
bioconditioning hypothesis would seem to be of value.
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