A Paleoenvironmental Study Tracking Eutrophication, Mining Pollution, and Climate Change in Niven Lake, the First Sewage Lagoon of Yellowknife (Northwest Territories)

Emily M. Stewart^{1,2} Kathryn E. Hargan,³ Branaavan Sivarajah,¹ Linda E. Kimpe,³ Jules M. Blais³ and John P. Smol¹

APPENDIX 1: SEDIMENT CHRONOLOGY

The Niven Lake sediment core was dated using the radioactivities of ²¹⁰Pb, as well as ²¹⁴Bi and ²¹⁴Pb (averaged to give supported ²¹⁰Pb activity), and the circa-1963 peak in ¹³⁷Cs was used as an independent dating marker (Fig. S1). Total ²¹⁰Pb activity was low as is common for sediments from northern regions (Wolfe et al., 2004); however, good exponential decay was observed over the core, and the Constant Rate of Supply (CRS) model (Appleby, 2001) was applied to determine the core chronology (Fig. S1). The peak in ¹³⁷Cs activity was difficult to determine, as is common in highly organic sediments (Blais et al., 1995). However, the modeled ¹³⁷Cs dates had good agreement with CRS ²¹⁰Pb-derived dates, giving a date of 1979 ± 12 years for 6.25 cm, corresponding to a CRS-date of 1971 ± 9 years. The CRS-derived sedimentation rate sharply increased from 8.25 to 6.25 cm (1939 to 1971) and then stayed approximately stable for the upper 6.25 cm of the core (Fig. S1). The increase in sedimentation rate had good agreement (within error) with the period of known sewage inputs to Niven (1948 to 1981). Therefore, our chronology places the sediment intervals that represent the duration of Niven Lake's use as a sewage lagoon from approximately 7.5 cm (~1950) to 5 cm (1981).

REFERENCES

- Appleby, P.G. 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M., and Smol, J.P., eds. Tracking environmental change using lake sediments, Vol. 1: Basin analysis, coring and chronological techniques. Dordrecht: Kluwer Academic Publishers. 171–203.
- Blais, J.M., Kalff, J., Cornett, R.J., and Evans, R.D. 1995. Evaluation of ²¹⁰Pb dating in lake sediments using stable Pb, *Ambrosia* pollen, and ¹³⁷Cs. Journal of Paleolimnology 13(2):169–178.

https://doi.org/10.1007/BF00678105

Wolfe, A.P., Miller, G.H., Olsen, C.A., Forman, S.L., Doran, P.T., and Holmgren, S.U. 2004. Geochronology of high latitude lake sediments. In: Pienitz, R., Douglas, M.S.V., and Smol, J.P., eds. Tracking environmental change using lake sediments, Vol. 8: Long-term environmental change in Arctic and Antarctic lakes. Dordrecht: Springer. 19–52.

¹ Paleoecological Environmental Assessment and Research Laboratory, Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada

² Corresponding author: em.stewart16@gmail.com

³ Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada

[©] The Arctic Institute of North America

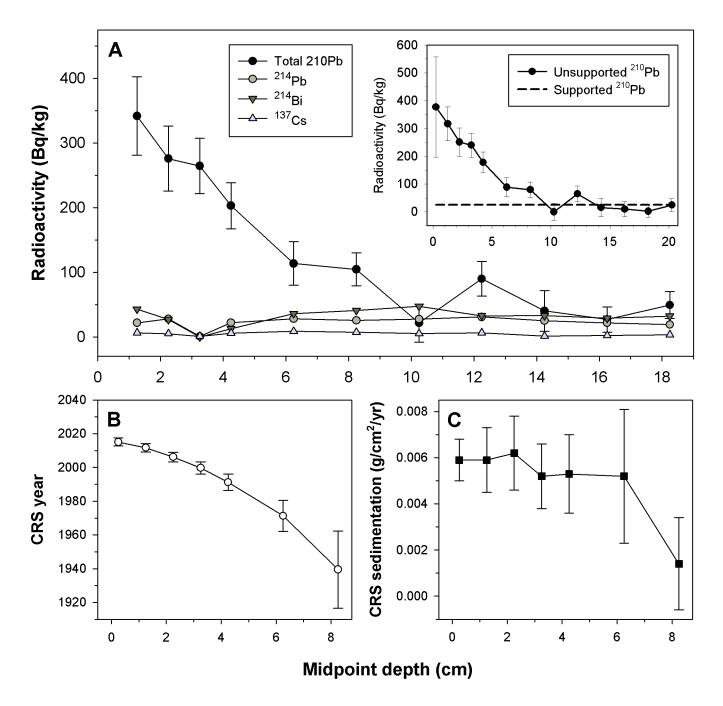


FIG. S1. ²¹⁰Pb gamma spectrometry dating was used to develop a chronology for the Niven Lake (Northwest Territories) sediment core. A) The radioactivity in becquerels per kilogram (Bq/kg) for total ²¹⁰Pb (with error), ²¹⁴Pb, ²¹⁴Bi, and ¹³⁷Cs, with an inset showing the radioactivity of unsupported ²¹⁰Pb and supported ²¹⁰Pb (estimated using an average of ²¹⁴Pb and ²¹⁴Bi). B) The chronology (years AD) and associated error derived using the CRS model. C) The CRS-derived sedimentation rate (g/cm²/year). All x-axes are plotted as the midpoint of the 0.5 cm interval used for analysis.