# Perfluorinated Chemicals in Meromictic Lakes on the Northern Coast of Ellesmere Island, High Arctic Canada 

JULIE VEILLETTE, ${ }^{1,2}$ DEREK C.G. MUIR, ${ }^{3}$ DERMOT ANTONIADES, ${ }^{1}$ JEFF M. SMALL, ${ }^{3}$ CHRISTINE SPENCER, ${ }^{3}$ TRACEY N. LOEWEN, ${ }^{4}$ JOHN A. BABALUK, ${ }^{4}$ JAMES D. REIST ${ }^{4}$ and WARWICK F. VINCENT ${ }^{1}$

(Received 25 June 2010; accepted in revised form 26 January 2012)

APPENDIX 1: SUPPLEMENTARY FIGURE AND TABLES

TABLE S1. Table of definitions of perfluorinated chemicals found in the environment.

| Perfluorosulfonates | PFSAs |
| :--- | :--- |
| Perfluorobutane sulfonate | PFBS |
| Perfluorohexane sulfonate | PFHxS |
| Perfluoroheptane sulfonate | PFHpS |
| Perfluorooctane sulfonate | PFOS |
| Perfluorodecane sulfonate | PFDS |
| Perfluorocarboxylates | PFCAs |
| Perfluoroheptanoic acid | PFHpA |
| Perfluorooctanoic acid | PFOA |
| Perfluorononanoic acid | PFNA |
| Perfluorodecanoic acid | PFDA |
| Perfluororoundecanoic acid | PFUnA |
| Perfluorododecanoic acid | PFDoA |
| Perfluorosulfonamide |  |
| Perfluorooctane sulfonylamide | PFOSA |
| Unsaturated fluorotelomer acids |  |
| Perfluoroundecanoic acid | $6: 2$ PFUA |
| Perfluoroundecanoic acid | $8: 2$ PFUA |
| Perfluoroundecanoic acid | $10: 2$ PFUA |
| Precursor alcohols |  |
| Perfluorosulfonamido alcohols | PFSOHs |
| Fluorotelomer alcohols | FTOHs |

[^0]TABLE S2. Samples analyzed for the Lake A catchment study of PFCs. Two subsamples of a single sample were taken at every site or depth, except for water at the outflow of Lake A (July 2007) and snow from the shore (August 2008), which are from one sample, and inflow at delta (inflow A; July 2007), which is the average of two samples. The average of the two subsamples from a single sample site is presented in this study. Surface water in the lake (centre and littoral) was sampled at 2 m depth. Inflow, moat, and outflow waters were sampled just below the surface. Snow from the north shore of the lake was sampled less than two days after snowfall.

| Component | Date | Number of samples |
| :--- | :--- | :--- |
| Water (depth profile) | 30 May 2008 | 1 profile $(2,10,32 \mathrm{~m})$ |
|  | 20 August 2008 | 1 profile $(2,10,32 \mathrm{~m})$ |
| Sediments | 31 May 2008 | 1 core |
| Water (surface, $0-2 \mathrm{~m})$ | 12,14 July 2007 | 5 sites |
|  | 30 May 2008 | 2 sites |
| Snow | 20 August 2008 | 4 sites |
|  | 30 May 2008 | 2 sites (high and low in the catchment) |

TABLE S3. Number of samples analyzed for the food web study. Whole individuals of zooplankton and whole body homogenate (*) or dorsal muscle of arctic char were analyzed.

| Lake | Component | Date | Number of samples |
| :--- | :--- | :--- | :--- |
| A | Zooplankton | 24 August 2008 | $1(3$ subsamples of the same tow) |
|  | Arctic char | $27-28$ July 2002* | 27 |
|  |  | 16 July 2007 | 1 |
|  |  | 30 May 2008 | 3 |
| C2 | 24 August 2008 | 1 |  |

TABLE S4. Instrument detection limit (IDLs) and method detection limit (MDLs) for sediments, zooplankton and fish, and water and melted snow samples.

|  | Sediments ( $\mathrm{pg} \mathrm{g}^{-1}$ dry weight) |  | Zooplankton and fish ( $\mathrm{pg} \mathrm{g}^{-1}$ wet weight) |  | Water and snow ( $\mathrm{pg} \mathrm{L}^{-1}$ ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IDL | MDL | IDL | MDL | IDL | MDL |
| PFBS | 11.0 | 11.0 | 11.0 | 11.0 | 0.9 | 0.8 |
| PFHxS | 2.8 | 2.8 | 2.8 | 2.8 | 0.2 | 0.7 |
| PFHpS | 6.0 | 6.0 | 6.0 | 6.0 | 0.5 | 0.3 |
| PFOS | 6.0 | 4.3 | 6.0 | 6.0 | 0.5 | 14.5 |
| PFDS | 3.0 | 3.0 | 3.0 | 3.0 | 0.2 | 1.0 |
| PFHpA (C7) | 2.5 | 2.5 | 2.5 | 2.5 | 0.2 | 16.3 |
| PFOA (C8) | 1.3 | 3.4 | 1.3 | 1.3 | 0.1 | 15.3 |
| PFNA (C9) | 1.2 | 1.2 | 1.2 | 1.2 | 0.1 | 9.0 |
| PFDA (C10) | 1.4 | 1.4 | 1.4 | 1.4 | 0.1 | 6.6 |
| PFUnA (C11) | 1.0 | 1.0 | 1.0 | 1.0 | 0.1 | 3.4 |
| PFDoA (C12) | 1.2 | 1.2 | 1.2 | 1.2 | 0.1 | 3.6 |
| PFOSA | 1.1 | 1.1 | 1.1 | 1.1 | 0.1 | 1.0 |
| 6:2 PFUA | 4.2 | 4.2 | 4.2 | 4.2 | 0.3 | 4.4 |
| 8:2 PFUA | 1.0 | 1.0 | 1.0 | 1.0 | 0.1 | 0.1 |
| 10:2 PFUA | 1.0 | 1.0 | 1.0 | 1.0 | 0.1 | 0.1 |

TABLE S5. Mean method or laboratory blank values for sediments ( $\mathrm{n}=3$ ), zooplankton and fish ( $\mathrm{n}=6$ ), and water and melted snow $(\mathrm{n}=5)$. Standard deviations (SD) are indicated between parentheses. Non-detected (nd) means that no analyte was observed above instrument detection limits (IDLs) inferred from extrapolating the calibration curve to a signal-to-noise ratio of three. Sediment method blank consisted of sediments deeper than 5 cm , zooplankton and fish laboratory blanks consisted of methanol, and water method blanks consisted of the solvents and the cartridge.

|  | Sediments ( $\mathrm{pg} \mathrm{g}^{-1}$ dry weight) | Zooplankton and fish ( $\mathrm{pg} \mathrm{g}^{-1}$ wet weight) | Water and melted snow ( $\mathrm{pg} \mathrm{L}^{-1}$ ) |
| :---: | :---: | :---: | :---: |
| PFBS | nd | nd | 2.1 (0.3) |
| PFHxS | nd | nd | 0.7 (0.2) |
| PFHpS | nd | nd | 1.0 (0.1) |
| PFOS | 6 (1) | nd | 7.5 (4.8) |
| PFDS | nd | nd | 0.8 (0.3) |
| PFHpA (C7) | nd | nd | 4.0 (5.4) |
| PFOA (C8) | 46 (3) | nd | 8.3 (5.1) |
| PFNA (C9) | nd | nd | 2.4 (3.0) |
| PFDA (C10) | nd | nd | 1.6 (2.2) |
| PFUnA (C11) | nd | nd | 0.8 (1.1) |
| PFDoA (C12) | nd | nd | 0.9 (1.2) |
| PFOSA | nd | nd | 2.2 (0.3) |
| 6:2 PFUA | nd | nd | 2.2 (1.5) |
| 8:2 PFUA | nd | nd | nd |
| 10:2 PFUA | nd | nd | nd |

TABLE S6. Mean extraction recoveries (\%) of ${ }^{13} \mathrm{C}$-mass labeled standards added to samples of sediments ( $\mathrm{n}=9$ ), zooplankton ( $\mathrm{n}=3$ ), fish $(\mathrm{n}=56)$, water $(\mathrm{n}=29)$ and melted snow $(\mathrm{n}=5)$, with standard deviations $(\mathrm{SD})$ in parentheses. Mean recoveries of PFNA for water and melted snow were calculated with the instrument performance internal standard that was added just before LC/MS/MS analysis. nd: non-detected.

|  | Sediments | Zooplankton | Fish | Water | Melted snow |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PFHxS |  |  |  | 180 (23) | 168 (18) |
| PFOS | 50 (16) | 74 (24) | 84 (29) | 123 (19) | 119 (12) |
| PFOA (C8) | 67 (20) | 122 (13) | 122 (35) | 102 (16) | 119 (15) |
| PFNA (C9) | 53 (17) | 77 (9) | 92 (29) | 54 (9) | 68 (7) |
| PFDA (C10) | 52 (16) | 73 (21) | 71 (25) | 88 (13) | 45 (32) |
| PFUnA (C11) | 52 (16) | 73 (21) | 71 (25) | 72 (19) | 28 (22) |
| PFDoA (C12) | 43 (20) | 27 (25) | 48 (26) | 55 (13) | 25 (13) |
| 6:2 PFUA | nd | nd | nd | 56 (22) | 103 (19) |
| 8:2 PFUA | nd | nd | nd | 63 (31) | 54 (9) |
| 10:2 PFUA | nd | nd | nd | 43 (29) | 12 (7) |

TABLE S7. Mean and range of PFC concentrations ( $\mathrm{pg} \mathrm{L}^{-1}$ ) in surface water samples and snow of the lake catchment for all compounds with concentrations above the method detection limits. Lake: sampling sites at the centre of the lake and in the littoral zone ( 30 m from the delta); delta: sampling sites at the moat around the delta and at the inflow of the delta (inflow A); inflow B: the inflow from Lake B; outflow: the outflow of Lake A to the Arctic Ocean; snow sampled in May 2008 was collected from a higher and lower location in the catchment; snow sampled in August 2008 was collected from the north shore and was sampled less than two days after snowfall.

|  | 12 and 14 July 2007 |  |  |  |  | 30 May 2008 |  |  |  | 19-20 August 2008 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lake | Delta |  | Inflow B | Outflow | Lake |  | Snow |  | Lake |  | Inflow B | Outflow | $\frac{\text { Snow }}{\text { Shore }}$ | Surface water |  |
|  | Littoral | Moat | Inflow A |  |  | Centre | Littoral | High | Low | Centre | Littoral |  |  |  | Mean (SD) | Range |
| PFBS | 15 | 14 | 18 | 21 | 20 | 11 | 11 | 3 | 4 | 14 | 11 | 24 | 19 | 3 | 16(4) | 11-24 |
| PFHxS | 4 | 3 | 6 | 9 | 7 | 8 | 6 | 3 | 2 | 10 | 6 | 24 | 13 | 0.7 | $9(6)$ | 3-24 |
| PFHpS | 0.6 | <0.5 | 0.7 | 0.5 | 0.9 | 1 | 1 | 1 | 1 | 1 | 0.8 | 3 | 2 | <0.5 | 1(1) | 0.4-3 |
| PFOS | 23 | 21 | 13 | 16 | 13 | 19 | 14 | 70 | 14 | 27 | 32 | 71 | 27 | 35 | 25(16) | 13-71 |
| PFHpA | 69 | 60 | 59 | 93 | 88 | 90 | 100 | 213 | 244 | 98 | 134 | 190 | 165 | 37 | 104(42) | 59-190 |
| PFOA | 131 | 137 | 85 | 145 | 142 | 125 | 126 | 199 | 239 | 113 | 175 | 245 | 216 | 27 | 149(46) | 85-245 |
| PFNA | 91 | 108 | 57 | 89 | 90 | 99 | 109 | 195 | 273 | 143 | 162 | 163 | 192 | 32 | 118(41) | 57-192 |
| PFDA | 23 | 27 | 3 | 8 | 8 | 18 | 12 | 29 | 41 | 15 | 20 | 18 | 18 | 0.3 | 15(7) | 3-27 |
| PFUnA | 5 | 9 | 1 | 3 | 2 | 11 | 8 | 19 | 30 | 10 | 11 | 16 | 14 | 0.2 | 8 (5) | 1-16 |
| $\underline{\text { PFCs }}$ | 362 | 379 | 243 | 385 | 371 | 382 | 387 | 732 | 848 | 431 | 552 | 754 | 666 | 134 | 446 | 243-754 |

TABLE S8. PFC concentrations ( $\mathrm{pg} \mathrm{L}^{-1}$ ) at 2, 10, and 32 m in Lake A for all compounds with concentrations above the method detection limits.

|  | 30 May 2008 |  |  | 20 August 2008 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 m | 10 m | 32 m | 2 m | 10 m | 32 m |
| PFBS | 11 | 11 | 0.8 | 14 | 17 | $<0.9$ |
| PFHxS | 8 | 7 | 1 | 10 | 11 | 1.3 |
| PFHpS | 1 | 1 | 0.9 | 1.4 | 2 | 0.8 |
| PFOS | 19 | 30 | 16 | 27 | 39 | 4 |
| PFHpA | 90 | 92 | 7 | 98 | 105 | $<0.2$ |
| PFOA | 125 | 113 | 25 | 113 | 120 | 9 |
| PFNA | 99 | 97 | 26 | 143 | 125 | 6 |
| PFDA | 18 | 14 | 11 | 15 | 26 | 4 |
| PFUnA | 11 | 11 | 5 | 10 | 11 | 1.4 |
| EPFCs | 382 | 376 | 93 | 431 | 456 | 27 |

TABLE S9. Results of the statistical analyses that tested for differences in the horizontal and vertical distribution of PFCs. a) Two-way ANOVA testing for differences between lake sites (centre and littoral) at the different sampling times. b) Two-way ANOVA testing for differences between inflows, outflow, lake sites and snow at the three sampling times. c) Two-way ANOVA testing for differences between sites and analytes in July 2007, May 2008, and August 2008. d) Tukey test to find which analytes were different between the lake sites and the snow in May 2008. e) Tukey test to find which sites were different in August 2008. f) Two-way ANOVA testing for differences between depths at the two sampling times. g) Tukey test to find which depths were different for the analytes that were significantly different between depths. Asterisk (*) indicates significance at $\alpha=0.05$.

| a) | $\mathrm{F}_{\text {site }}$ | $p_{\text {site }}$ | $\mathrm{F}_{\text {time }}$ | $p_{\text {time }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total PFCs | 1.086 | 0.487 | 2.822 | 0.388 |  |  |
| PFBS | 1.594 | 0.426 | 2.815 | 0.388 |  |  |
| PFOS | $<0.001$ | 0.984 | 2.985 | 0.379 |  |  |
| PFHpA | 3.072 | 0.330 | 5.793 | 0.282 |  |  |
| PFOA | 1.053 | 0.492 | 0.312 | 0.782 |  |  |
| PFNA | 13.690 | 0.168 | 116.311 | 0.065 |  |  |
| PFDA | < 0.001 | 0.990 | 0.597 | 0.675 |  |  |
| b) | $\mathrm{F}_{\text {site }}$ | $p_{\text {site }}$ | $\mathrm{F}_{\text {time }}$ | $p_{\text {time }}$ |  |  |
| Total PFCs | 2.940 | 0.264 | 6.007 | 0.143 |  |  |
| PFBS | 4.764 | 0.178 | 4.444 | 0.184 |  |  |
| PFOS | 0.837 | 0.585 | 1.476 | 0.404 |  |  |
| PFHpA | 7.242 | 0.124 | 9.659 | 0.094 |  |  |
| PFOA | 1.205 | 0.483 | 2.136 | 0.319 |  |  |
| PFNA | 9.066 | 0.101 | 15.600 | 0.060 |  |  |
| PFDA | 1.758 | 0.383 | 0.584 | 0.631 |  |  |
| c) | $\mathrm{F}_{\text {site }}$ | $p_{\text {site }}$ | $\mathrm{F}_{\text {analyte }}$ | $p_{\text {analyte }}$ |  |  |
| July 2007 | 1.027 | 0.376 | 74.832 | $<0.001^{*}$ |  |  |
| May 2008 | 101.943 | < 0.001* | 200.274 | <0.001* |  |  |
| August 2008 | 3.986 | 0.018* | 70.427 | $<0.001^{*}$ |  |  |
| d) | q | $p$ |  |  |  |  |
| Total PFCs | 22.576 | $<0.001 *$ |  |  |  |  |
| PFBS | 0.221 | 0.878 |  |  |  |  |
| PFHxS | 0.368 | 0.797 |  |  |  |  |
| PFOS | 1.422 | 0.327 |  |  |  |  |
| PFHpA | 7.349 | $<0.001$ * |  |  |  |  |
| PFOA | 5.137 | 0.002* |  |  |  |  |
| PFNA | 7.180 | $<0.001$ * |  |  |  |  |
| PFDA | 1.101 | 0.445 |  |  |  |  |
| PFUnA | 0.818 | 0.570 |  |  |  |  |
| PFDoA | 0.160 | 0.911 |  |  |  |  |
| e) | q | $p$ |  |  |  |  |
| Inflow B vs. lake centre | 4.655 | 0.014* |  |  |  |  |
| Inflow B vs. lake littoral | 2.695 | 0.250 |  |  |  |  |
| Inflow B vs. outflow | 1.275 | 0.804 |  |  |  |  |
| Outflow vs. lake centre | 3.380 | 0.103 |  |  |  |  |
| Outflow vs. lake littoral | 1.420 | 0.748 |  |  |  |  |
| Lake centre vs. lake littoral | 1.960 | 0.519 |  |  |  |  |
| f) | $\mathrm{F}_{\text {depth }}$ | $p_{\text {depth }}$ | $\mathrm{F}_{\text {time }}$ | $p_{\text {time }}$ |  |  |
| Total PFCs | 27.485 | 0.035* | 0.151 | 0.735 |  |  |
| PFBS | 5.166 | 0.162 | 0.177 | 0.715 |  |  |
| PFOS | 3.668 | 0.214 | $<0.001$ | 0.984 |  |  |
| PFHpA | 273.791 | 0.004* | 3.280 | 0.212 |  |  |
| PFOA | 57.650 | 0.017* | 1.195 | 0.388 |  |  |
| PFNA | 11.802 | 0.078 | 0.789 | 0.468 |  |  |
| PFDA | 4.220 | 0.192 | 0.984 | 0.426 |  |  |
| g) | $\mathrm{q}_{2}$ vs. 32 m | $p_{2}$ vs. 32 m | $\mathrm{q}_{2}$ vs. 10 m | $p_{2}$ vs. 10 m | $\mathrm{q}_{10}$ vs. 32 m | $p_{10}$ Vs. 32 m |
| Total PFCs | 8.970 | 0.044* | 0.217 | 0.987 | 9.187 | 0.042* |
| PFHpA | 27.955 | 0.005* | 1.361 | 0.663 | 29.316 | 0.004* |
| PFOA | 13.334 | 0.020* | 0.374 | 0.963 | 12.960 | 0.021* |

S6 • J. VEILLETTE et al.

TABLE S10. Linear regression parameters for relationships between total PFCs, fork length, and age.

| Regression | Lake A | Lake C2 | Both lakes |
| :--- | :---: | :---: | :---: |
| PFCs vs age: |  |  | 45 |
| n | 31 | 14 | 0.026 |
| $\mathrm{r}^{2}$ | 0.024 | 0.118 | 0.288 |
| $p$ | 0.402 | 0.229 |  |
| PFCs vs fork length: |  |  | 46 |
| n | 32 | 0.003 | 0.024 |
| $\mathrm{r}^{2}$ | 0.011 | 0.848 | 0.307 |
| $p$ | 0.575 |  |  |



FIG. S1. a) Total PFC concentrations as a function of fish age and b) fork length for the arctic char populations of Lake A (solid circles) and Lake C2 (open circles).


[^0]:    ${ }^{1}$ Département de Biologie \& Centre d'études nordiques, Université Laval, Québec City, Québec G1V 0A6, Canada
    ${ }^{2}$ Corresponding author: julie.veillette.2@ulaval.ca
    ${ }^{3}$ Environment Canada, 867 Lakeshore Road, Burlington, Ontario L7R 4A6, Canada
    ${ }^{4}$ Fisheries and Oceans Canada, Central and Arctic Region, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada
    (C) The Arctic Institute of North America

