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ABSTRACT.  Temperatures  were  recorded continuously during  spring  and  early 
summer  in a  shallow pond on Bathurst  Island in  the High  Arctic;  thawing was  rapid. 
After  the  thaw seasonal and diel  differences  within the  water and  mud showed that 
frozen  substrate  had a marked effect on mud  temperature,  but  that  the superficial 
mud received almost as  much  heat as the water  immediately  above it. Temperature 
summations suggested that even in  favourable shallow habitats low mud  tempera- 
tures  dictate the life-cycles  of more  than  one year of arctic  chironomids. The 
maximum-minimum  temperature  midpoint was a satisfactory  substitute for a 
recorder-obtained  day-mean, and seasonal  comparisons of pond  temperatures  in 
relation to bottom  fauna could  therefore be  based on daily  maximum  and  minimum 
mud  surface  temperatures. 

RI~SUMÉ. Températures  du  printemps et  du début  de l’été dans une  mare peu 
profonde  de  l‘Arctique. Dans  une  mare peu profonde,  sur l’île de Bathurst  dans  le 
Haut Arctique, on a enregistré de  façon  continue les températures du printemps 
et  du  début de l’été. Après le dégel, les différences  saisonnières et quotidiennes dans 
l’eau et  dans la vase montrent  que  le  substrat pergelé  a un effet marqué  sur  la 
température  de  la vase, mais aussi que la vase  superficielle reçoit presque autant 
de chaleur que l’eau qui la recouvre  immédiatement.  Les-compilations des  temp& 
ratures suggèrent que  même  dans  des  habitats  favorables  parce  que  peu  profonds, 
les basses températures  de la vase  dictent les cycles  biologiques pluriannuels  chez 
les chironomides de l’Arctique. La médiane des températures  maximum  et  minimum 
peut  être substituée à la  température  moyenne enregistrée; les températures  maxi- 
mum  et  minimum quotidiennes de  la surface de  la vase  peuvent donc servir de  base 
aux  comparaisons saisonnières  des températures  de la mare  en relation avec la 
faune  du  fond. 

PE3IOME. flannue uswepenus mewnepamypu e mmmiino& bacceüne nu ocmpoee 
LbnepCm. npHBOAIITCR  AaHHbIe  6ecnpepb1~Hb1x  El3MepeHElfi   TeMIIepaTypbI,  npo- 
BeAeHHbIX  BecHo& EI PaHHHM JIeTOM B MeJIICOBOAHOM 6accefi~e H a  O-Be B a T e p C T .  
06cyxcgae~c~ ..BJIHIIHHe T e M I I e p a T y p b I  BOAbI. H H a 8  HB p 3 B H T E I e  AOHHOfi 4 a y H b I  
6accefi~a. 

INTRODUCTION 

Some temperature characteristics of small water  bodies  in the High Arctic have 
been  given by Oliver and Corbet (1966) from studies made at Lake Hazen, Elles- 
mere Island. Their conclusions for shallow pond habitats were  derived from con- 
tinuous instrument records from 2 sites  in a single pond, and from fixed  daily 
“spot” measurements of surface water in a number of other ponds throughout 
the season.  Some additional measurements are given  by Corbet (1967). 

1Entomology  Research Institute,  Canada  Department of Agriculture,  Ottawa,  Ontario. 
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This paper presents the results of continuous instrument measurements made 
during spring and early  summer in a shallow pond on Bathurst Island, Northwest 
Territories. Records were made of bottom temperature in shallow  water at dif- 
ferent depths and of temperature in the surface mud  zone. These records are 
relevant to the development of bottom-living pond organisms in the Arctic. The 
geaed conclusions advanced by Oliver and Corbet (1966) were  confirmed,  and 
the measurements of mud temperatures allowed  some additional conclusions. 

FIG. 1. Northern half 
of pond on 20 June 1969, 
from  west. 

FIG. 2. Pond on 19 July 
1969, from northwest. 

DESCRIPTION OF HABITAT 

The pond studied (Figs. 1 and 2) lies at 75'43'N., 98'28'W. near the west 
bank of the Goodsir River at the eastern edge of a marshy area which  extends 
along a valley  lying  between 98'25'W. and 98'45'W. This pond is maintained by 
drainage from part of the hillside forming the northern limit of the valley. Two 
smaller ponds immediately to the northwest are temporary. The pond is  essentially 
a shallow basin, with a diameter of 30 m., a maximum depth of 25 cm., and a 
mean depth at spring maximum of 17 cm. A soft muddy  bo.ttom predominates; 
it is little to moderately  vegetated, although some areas are stony and the edges 
are characterized by a moss mat held together by salts deposited during summer 
drying out. 

This pond is representative of a large number of small  shallow but permanent 
ponds in the general marsh area, all  with a very  similar fauna. 
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METHODS 

Continuous chart records were obtained for the period 12 June to 18 July 
using a battery-driven thermograph, accurate to k 1°F. (OSOC.), described  by 
Voisey et al. (1964). Results were obtained from each of 9 thermistor probes 
(Y.S.I. no. 401, interchangeable within  O.l"C.), the outputs of which were 
recorded  cyclically to give a complete  set of readings about every 35 minutes. 
Comparative differences of much  less than k0.5"C. were  also detectable between 
records made during the same  cycle, and between  successive records from the 
same probe. The charts were related to solar time, and the temperature of each 
probe taken from the record nearest to each solar hour. Other  computations were 
made from these  hourly  records. 

The pond was delineated  in  early June by probing  through the snow  cover. 
Probes were  installed beneath snow, and into the pond ice.  Since the probe wires 
have  high  absorptive  power,  they  melt the snow around them during sunshine 
and so affect their position and the subsequent local disappearance of snow. The 
probes were not shielded during the thaw, and some additional measurements 
were therefore made  with a dial thermometer. An estimate of the mean  snow 
cover of the pond for each  day  was made  from snow depth measurements at a 
number of sites.  Several dial thermometer  readings  were made  at  1200 hrs.  under 
depths corresponding to the  estimate and averaged to give a mean  ice-surface 
temperature. 

After the thaw, probes were  relocated beneath different depths of water and 
mud.  Most of the probes lay  above or in the predominating softer, moderately 
vegetated areas of the pond bottom. The bottom  in the shallowest area (near the 
margin)  had a thick crust of vegetation  because it was dry for part of the summer; 
the probes penetrating this zone  were therefore in vegetation rather than mud. 
Probes were  placed on the pond bottom, and  at 1, 2  and 5 cm. depths into mud 
under three different depths of water.  Water depth above the probes was  measured 
at intervals to take account of changes  in pond level  caused by evaporation and 
rainfall. 

Temperatures directly  above the ground surface were  measured  in a sedge area 
immediately adjacent to the pond. 

From the data obtained, maximum-minimum  midpoints and day-means (see 
definitions  below)  were  computed for different  days and zones in order to assess. 
the reliability of using the easily-obtained  midpoint  in place of the day-mean for 
such  pond temperatures. In addition,  day-means  were  used to  compute mud  tem- 
perature sums for estimation of the heat available to organisms  in the pond  mud. 
The major portion of the pond bottom fauna consisted of the larvae of chironomid 
midges, the adult emergence of which  took  place in two peaks, assayed by surface 
emergence traps (described in Corbet 1965). Summed temperatures for the dif- 
ferent zones  were therefore compared for the approximate developmental  period 
from the thaw to the second  emergence peak, the 25-day  period 23  June to 17 July, 
during which  overwintering larvae of the final instar of several  species  developed 
through the pupal stage to the adult. 



116 TEMPERATURES IN AN ARCTIC POND 

RESULTS 
Definitions 

Hour-mean: average temperature for the same hour (solar 

Day-mean: mean of 24 hourly temperatures for a given 

Period-mean: mean temperature over a period of days, 
derived from the  true  or day-mean; 

Maximum-minimum midpoint: average of the maximum and the minimum on 
a given  day. 

Pond temperatures 
The first snow  began to melt on the pond area in mid-June, and by 18 June 

the extreme edges (10 to 15 cm.) were clear of snow and ice,  with  melt water 
above the central pond ice. The pond bottom inside the marginal (vegetated-crust) 
area was not exposed  generally until after 20  June.  The last traces of central ice 
melted on 24 June. 

Fig. 3 shows the course of temperature (day-mean) from 12 to 22 June at the 
ice surface under 2 initial depths of snow  (curves 2 and 3), and in the ice near 
the pond edge  (curves 4 to 6). The rapidity of the thaw shown  by these curves 
is confirmed  (Fig. 3 inset) by dial thermometer measurements at the ice surface 
under the daily mean pond snow  cover. This cover was  initially 25 cm., its small 
depth being accounted for by the exposed  position of the pond. The temperature 
of the layer of air next to the ground is  also  shown  (curve 1) for comparison with 
the pond temperature. 

time)  over a number of days; 

day; 

FIG. 3. Day-means during 
thaw. 1) ground surface. 2) 
under 10 cm. snow initially. 
3) 15 cm.  snow. 4) 12.5 cm. 
snow, 2.5 cm.  ice. 5) 12.5 cm. 
snow, 5 cm.  ice. 6 )  12.5 cm. 
snow, 15 cm. ice (pond bottom). 
Inset: Dial-thermometer records 
(ice surface  under mean snow 
cover). 

13 14 15 16 17 18 19 20 71 
JUNE 
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Although there was a strong upward trend of temperature during the thawing 
period, a distinct diel pattern was  shown  by the hour-means, with  maxima at 
1700 hrs. and minima at  0400 hrs. (solar  time),  except for the pond bottom under 
15 cm. ice where the mean maximum occurred at 1800 hrs. 

Water and adjacent mud temperatures after the thaw  were recorded from 23 
June until 18  July. Fig. 4 compares successive  day-means for the pond bottom 
(curve 2) and for the mud at 2 depths (curves 3 and 4) under the same mean 
depth of water, about 9 cm. The ground surface temperatures are shown  in 
curve 1.  The variation in water  level above the probes (as evaporation reduced 
the level from the spring peak, which  was then restored by rainfall) is  also  shown. 
The fluctuation of the temperatures is  very noticeable, and the fluctuations are 
synchronized between  all  zones. The differences  between the colder deeper zones 
and  the warmer shallower  ones  diminish  as the season  progresses, and this trend 
can be detected in Fig. 4 until at least mid-July. 

FIG. 4. Day-means  after 
thaw, and  water  depth 
profile. 1) ground  surface. 
2) mean  water  depth of 
9.0 cm., pond bottom. 
3) do., 2 cm. mud. 4) do., 
5 om. mud. 

Period-means at the mud surface were  similar beneath different depths of water. 
Means beneath 4 cm., 9 cm.  and 18.5 cm. of water  were 5.89"C.,  5.69"C. and 
5.56"C. respectively, for the period 23  June to 6 July. (This period was taken in 
order to include comparable data for the shallowest depth, records for which  were 
discontinued  when the level had fallen to less than 2 cm. on 7 July.) At 2 cm. into 
the mud, the period-mean for  23  June to 17 July, in water 9 cm. deep, was not 
lowered  very  markedly (4.95"C.),  but at 5 cm. it was  much  lower (3.06"C.). 
At the ground surface this period-mean was  5.92OC.,  which is very  close to that 
of the mud surface in the pond. 

The daily patterns in  the different  zones  have  been compared by plotting hour- 
means.  Fig. 5 shows the difference  between bottom temperatures under different 
depths of water for the period 23  June  to  6 July. The differences  between  different 
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2 4 6 8 10 12  14 16 18 ' 20 22 
SOLAR  HOUR 

FIG. 5. Pattern of 
hour-means for water  at 
the  pond bottom at 3 depths 
(23.vi-6.vii). 1) 4.0 cm. 
2) 9.0 cm. 3) 18.5 cm. 

i FIG. 6. Pattern of 
hour-means for water  at 
the  pond  bottom  and  mud  in 
a mean  depth of 9.0 cm. 
(23.vi-17.vii). 1) pond 
bottom. 2) 2  cm. mud. 
3)  5 cm.  mud. 

I 
' 2 4 6 ' 8  10 I 2  f4 16  18 20 22 

SOLAR  HOUR 

water  depths are small,  and the diel patterns are highly regular. Fig. 6 compares 
bottom temperature and mud temperatures in an average  water depth of about 
9 cm. for the period 23  June to 17 July. Here the regular  diel pattern shown is 
clearly  displaced  until later in the day  in the deeper  zones. This is most marked 
under 5 cm. mud (curve  3). 

The mean  times of the maxima and minima  (derived from the hour-means)  for 
the 25-day period, and also the mean  times  calculated separately for the earlier 
and later parts of the period, are shown more precisely in Fig. 7. They  confirm 
that in  general the maximum  and  minimum  were later in deeper  water and mud 
zones.  Fig. 7 shows also that early  in the season compared to the later part of the 
period  studied,  the  maximum  was later and the minimum  earlier  in  these deeper 
zones. 
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l 3  

MINIMA MAXIMA 

S O L A R  H O U R  

DEPTH OF 
WATER ICMI o 4 a  9 18.5 9 9 

MUD ICMI 0 0 0 2 5 
KEY 0 

FIG. 7. Mean  times of  daily maxima and  minima in different zones for  the periods 23 June 
to 6 July; 7 July to 17  July;  and 23 June to 17  July. 

Maximum-minimum midpoint/day-mean digerenee 
Analysis of the 271 pairs of records available (Table 1) showed that, except  in 

shallower  zones,  agreement  between  the  two parameters was rather close,  and that 
the  midpoint  more  often  lay  above than below the day-mean. The mean  difference 
for the  pond  zones  was  0.2  deg. C. and for the ground surface 0.6 deg. C., whereas 
the  greatest  difference on any one day  was 4 to 5 times  these  figures. 

TABLE 1. Distribution of the max.-min. midpoint/day-mean difference  for 
various zones. 

Percentage of records  with that difference in zones 
pond bottom mud 2 cm. mud 5 cm. 

midpointlday-mean 
digerenee ("C.) 

ground  snow + ice (all water (all water (all water 
surface  during  thaw depths) depths) depths) 

+1.9-  2.1  3 
1.7-  1.9 
1.5-  1.7  3 
1.3-  1.5  3 
1.1 - 1.3  9  1 
0.9- 1.1  3  3 
0.7-  0.9  17  1  7  3 
0.5 - 0.7  3  3  7 8 3 
0.3 - 0.5  9 6 8 7 11 
0.1 - 0.3  20  25  29  30  32 -0 1 - $0 1 . . . . . . . . . . . . . . . . . . . . . . . .  6 ,,..........,.,,,,41 . . . . . . . . . . . . . . . . . . . . . . .2~. . . . . . . . . . . . . . . . . . . . . . .  38 ......................... 51 

-0.1 - 0.3 15 17 15 12 3 
-0.3 - 0.5 6 7  1  2 
"0.5 - 0.7 3 

available to obtain 
Number ofpairs of recorris 

differences 34  69 73 60 35 



120 TEMPERATURES  IN AN ARCTIC POND 

The analysis  also  revealed that  the larger differences  were recorded on days 
when the normal diel pattern was disturbed. This was due to a very hot day fol- 
lowed  by a cloudy day, or a steady  fall of cool rain, causing the “maximum”  to 
precede the minimum; or to a short period of sunshine in an otherwise cloudy 
day. The disturbance of the diel pattern so produced was greatest in shallow 
zones, and especially at the ground surface. 

Temperature summation in bottom zones 
The day-degree  values  above 0°C. for various  zones are given in Table 2. The 

day-degrees for the zones are also  given  as a percentage of those for the warmest 
zone in each group, using 3 different  baselines. The percentages for a baseline 
of 0°C. compare the values  in the first column of the Table. For baselines of 2°C. 
and 4°C. they are based on values for the 25-day period computed from the day- 
means, disregarding days  when the mean  lay  below the baseline. (Computation 
from the hour-means gives  figures  which are little different.) From the instrument’s 
known absolute accuracy (f 1 OF.) the maximum  possible error in these  figures 
is k 14 day-degrees Centigrade: even  this  maximum error would not substantially 
affect the comparative conclusions  below. 

TABLE 2. Summed temperatures for different  zones during post-thaw  25-day 
period (extrapolated from 14-day  means for water depth and 1 cm.  mud  com- 
parisons); and amount for different  zones  as a percentage of the value for the 

warmest  zone  in each of the two groups, for different  baselines. 

Zone 

dav-dewees 

(above0”C.) 0 C. 
C&t&rade % of warmest  zone for baseline 

2°C. 4” c. 
pond  bottom, 4.0 cm.  water 
pond bottom, 9.0 cm.  water 
pond  bottom, 18.5 cm.  water 

147 100 
142 

100 
97  95 

100 
89 

139  94 92 82 

9.0 cm.  water,  pond bottom 
4.0 cm.  water, 1 cm.  mud 
9.0 cm.  water, 2 cm.  mud 
9.0 cm.  water, 5 cm.  mud 

141 100 100 100 
144 98* 97* 84* 
124 88 81 56 

76.5 54 31 3 

ground surface 148 - - - 

*of the value for  the  bottom under 4.0 cm. water; 1 cm.  mud  temperatures under a depth  of 
9.0 cm.  are not available. 

For the lower  baselines the differences  between  different  water depths were 
small (Table 2) and the top layer of bottom mud  also  received  almost  as  much 
heat as the water  immediately  above it. For the 0°C. baseline, the difference  over 
the top 2 cm. was about the same as  would be produced between the mud surface 
at the edge and that at the centre of the pond by the later thawing of the centre. 
Below the top 1 to 2 cm., however, there was a marked falling off in heat received 
and only about half of that  at the mud surface reached a depth of 5 cm. Further- 
more, at this depth in the mud, exposure to temperatures above 4°C. was 
negligible. 
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The results  show that the thawing of this  shallow arctic pond takes place 
rapidly once it begins  (Fig. 3). Thereafter the daily  difference in mean tempera- 
ture between  zones at different depths decreases as the season  progresses and the 
deeper substrate thaws  (Fig.  4). In such habitats the mean water temperature 
exceeds the screen air temperature by several  degrees  (Oliver and Corbet 1966), 

For a pond of this  size the edge  thaws  only a few  days before the centre; in 
larger deeper  water  bodies the differences from place to place are much greater. 
The differences  between  similar habitats with  different exposures may  also  be 
large. 

There is a distinct diel pattern in  all  zones  (Figs. 5 and 6), even during the 
thaw. The effect of permafrost, which  lies near the surface in the spring, can also 
be  seen  (Fig. 7).  In the spring compared to the early  summer the daily  minimum 
in deeper habitats is earlier because the frozen ground near the surface pulls the 
temperature down more rapidly. The maximum  is later in the deepest zone  because 
the temperature rise  is  slowed for the same reason. The effect of permafrost in 
producing water temperature gradients has been noted before (Haufe 1957). 
Early in the season, both maxima  and  minima are lower in deeper zones  (Figs. 
5 and 6). Oliver  and Corbet (1966) by comparing records for surface and bottom 
water  over  successive short intervals, showed that as the season  progresses  such 
a relationship disappears and the maximum  is then lower and the minimum  higher 
in the deeper  zone  where  changes are buffered. 

The ground surface temperature - which indicates the micro-climate  in  which 
most terrestrial arctic arthropods live - although more variable, has a mean  (in 
.this  exposed situation) of 5.9"C. (p. 117) which  is remarkably similar to the 
pond water temperatures. This similarity  is probably largely due to the general 
cloudiness during much of the period of measurement, for in  this  zone the heating 
effects of insolation are most marked (Geiger 1965), and a greater difference 
would  be  expected. Corbet (1967), using the same instrument and type of probe, 
measured markedly  higher ground surface temperatures near Lake Hazen, Elles- 
mere Island, in a fairly  sunny  season, the mean for 18 to 24  June being 14OC. The 
generally  dull  weather  on Bathurst Island during the present study  was partly 
due to the position of the pond in a valley running between  two  inlets of the sea, 
and partly to the break-up of large areas of open-sea  ice earlier than in  most 
seasons, facilitating the formation of mist and clouds. 

The upper 1 to 2 cm. of mud are almost  as  warm  (for the month following the 
thaw)  as the bottom water (Table 2), despite the underlying permafrost. The 
direct absorption of solar heat by the upper bottom material is doubtless a con- 
tributory factor where the water  is  shallow (and see  Pichler 1937; Geiger 1965). 
Lower layers are much colder. The similarity of the bottom-water and surface- 
mud temperature summations for low  baselines (Table 2) suggests that the water 
temperature at the pond bottom (which  is the easiest  zone in which to site sensors 
accurately) is a good indicator of conditions in the superficial substrate layers 
where  most organic activity and growth occurs. 

The extraction and analysis of hourly records to obtain pond temperatures is 
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very  time-consuming, and Oliver and Corbet (1966) tested the validity of using 
the maximum-minimum  midpoint  (which  is  easily derived) in place of the day- 
mean, for pond studies. They examined the difference  between these parameters 
for 65 records for a “surface” and 68 records for a “bottom” habitat. They found 
that the agreement was rather close; that the surface temperature showed poorer 
agreement than the bottom temperature; that  the midpoint more often exceeded 
the day-mean than otherwise,  since a pond heats up a little more rapidly than it 
cools  down. 

The records analysed here confirm  these  conclusions (Table l),  but also show 
that unusual days - when the normal diel pattern is disturbed - may produce 
quite large errors. Nevertheless,  Oliver and Corbet’s  (1966)  conclusion that the 
maximum-minimum midpoint is a satisfactory substitute for the  true day-mean, 
particularly for bottom temperatures and for seasonal studies where running 
means  might be used,  is  confirmed. 

Ecologically  significant  processes such as  growth  and  development  generally 
involve temperature thresholds below  which the processes do not occur (&lee 
et al. 1949, pp. 110-11). The relatively low temperatures of the mud layers of 
the  pond bottom suggest that such thresholds are highly important to benthic 
organisms  in the Arctic. The activity threshold of chironomid larvae from the 
pond lay at O O C . ,  or below in artificially supercooled situations, so that they  would 
have  been active immediately after thawing. The threshold for pupation in one of 
the species (Stictochironornus sp.)  was about 4°C. (personal observation). The 
baselines of Table 2 must therefore approximate thresholds for some of the pond 
species found, although the chironomids of deep arctic lakes perhaps develop at 
temperatures very close to freezing;  even so the life-cycle takes more than one 
year  (Oliver 1968). Even in shallow ponds life-cycles of more than one year are 
usual. The low  day-degree  values demonstrated for this  type of rather easily 
warmed, and hence  relatively favourable, habitat (although for part of a single 
rather unfavourable year) indicate why this should be so. 

The low temperature sums in Table 2 suggest that the conventional definition 
af a “growing season” based on a threshold of 42°F.  (5.56”C.) (e.g.,  Boughner 
1964)  is of limited  value  in the Arctic (see  Downes 1964, p. 281), even for habitats 
like that studied. Redefinition of the growing season for the Arctic in terms  of 
32°F. (0°C.) (Downes 1965, p. 258) seems desirable. Even if all temperatures 
above 0°C. permit development, the heat available  to  organisms in arctic habitats 
is  low. Together with the day to day fluctuation (Fig. 4) which operates in the 
Arctic close to thresholds of animal growth  and  activity, it reflects in these pond 
habitats the possibility of the marked differences from season to season for which 
the Arctic is  well  known. The simplest temperature measurements for shallow 
lentic habitats which  would  allow  meaningful  and reliable seasonal comparisons 
are the daily maxima and  minima at the water-substrate interface. 
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