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Remote Detection of Water Under Ice-covered 
Lakes on the  North Slope of Alaska 

AUSTIN  KOVACS’ 

ABSTRACT. Results from  using  an  impulse radar  sounding system  on the  North  Slope 
of  Alaska to detect the existence of  water  under  lake ice are presented. It  was  found 
that  both  lake ice thickness and  depth  of  water  under  the ice  could be determined  when 
the radar  antenna was either on the ice surface or airborne in a helicopter. The  findings 
also revealed  that  the  impulse radar  sounding system could detect where  lake ice  was 
bottom-fast and  where  water existed under  the ice  cover. 

INTRODUCTION 

Lakes on the North Slope of Alaska are typically less than 2 m deep. As a 
result, by  March or April  most  of  them are solidly frozen to the bottom. By 
May, even lakes 2 m deep become  solid ice. The few lakes deeper than 2 m in 
the Prudhoe Bay area are used extensively for a fresh water supply. However, 
because of drawdown  during the winter, the water in these lakes is frequently 
depleted. A similar situation exists in the nearby rivers, where water is drawn 
from a few “deep” pools. Heavy pumping  from these pools  has in the past 
also depleted this water resource. Recehtly, use of this resource has  been 
restricted by the  State of Alaska, to maintain a water depth adequate to 
sustain the fish populations that over-winter in the deep pools. 

During  May 1976, the supply of water for consumption and housekeeping, 
as well as for fire-fighting,  became very short in the area of Prudhoe Bay. The 
normal sources of water under the ice of the lakes and rivers were  rapidly 
being exhausted. High demand, and therefore excessive pumping,  was a cause 
as was the cold winter, which  had increased the ice cover thickness and 
thereby reduced the quantity of water available. Many  camps  imposed 
restrictions on water use. New sources of water were also sought  by the 
tedious  drilling of holes  through  take  and river ice in hopes of locating a 
depression with a supply of potable water. 

During this period, impulse radar was  used near Prudhoe Bay  to  profile sea 
ice thickness (Kovacs, 1977, 1978). Because of the water shortage, it was 
decided  to determine if airborne impulse radar could be used for locating 
water under lake ice. This report presents the findings of this study. 

RADAR SYSTEM 

The impulse radar system  used produces a signal  with a center frequency of 
approximately 100 MHz over a band  from 50 to 150 MHz (at  the -3db points). 
The equipment functions as an  echo-sounding system which generates 
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gaussian-shaped electromagnetic impulses of only a few nanoseconds 
duration. The electromagnetic energy  is  radiated  from an antenna into the 
subsurface and is then reflected from one  or more subsurfaces back to the 
antenna. The depth of penetration is dependent on the electrical 
characteristics of the subsurface, i.e.  the dielectric constant or conductivity of 
the subsurface material. The impulse radar signal  information collected in the 
field  was stored on magnetic tape for later analysis and also displayed in  real 
time  on a graphic recorder, in a manner  similar  to a single-trace 
acoustic-profiling system used for the subbottom profiling  of  marine 
sediments. The primary quantity measured is the difference  in travel time 
between various echoes. An example of an  impulse  signal received by the 
radar receiver and  how  multiple  impulses are recorded for on-site field 
interpretation is shown in Figure 1 .  A more  detailed description of the radar 
system  has been given  by  Morey (1974). 

For material whose dielectric constant (E,) is known, the velocity (V) of the 
transmitted electromagnetic signal can be calculated by: 
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FIG. 1.  An example of the radar impulse  signal versus time  and its equivalent real time  graphic 
recorder display. 
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where c = velocity of electromagnetic signal in air (approximately 3 x 10" 
mls). Representative dielectric constants at 100  MHz for fresh water and 
freshwater lake ice are 8 1 and 3.2 respectively. 

Because the two-way travel time  of the impulse radar signal  from the ice 
surface to the ice  bottom  and  back to the surface can be measured, it is 
therefore possible to determine the ice thickness from: 

t 

2 
D = V A  (2) 

where td = travel time  from the surface to the subsurface interface and back. 

FIELD STUDIES 

There is  no doubt that impulse radar can profile the thickness of freshwater 
ice. For example, this system  was  used as early as 1971 to measure sea ice 
and lake ice thickness (Bertram et al., 1972).  More recently, the radar system 
was  used to determine the thickness of river ice, frazil ice  accumulations  and 
the contour of the river bottom  (Annan and Davis, 1977a, b; Dean, 1977) and 
the thickness of  glacial ice and snow (Kovacs and Gow, 1975,  1977a, b; 
Kovacs, 1977). 

An example of the impulse radar data displayed  on a graphic recorder 
during  sounding  from the surface of lake ice is shown in Figures 2 and  3. The 
profiling  was  accomplished  in  1974. 

FIG. 2. Radar  sounding  data  taken  from the ice surface on  Canaan Street Lake, Canaan, New 
Hampshire.  The  record shows interfaces and other  detail  typically  obtained during impulse radar 
profiling on freshwater ice. The  distance between vertical event marks is 20 m. 
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Figure 2 was obtained by  pulling the radar antenna across the ice surface of 
Canaan Street  Lake, Canaan, N.H. Figure 3 was obtained by  moving an 
elevated antenna across the surface of Post Pond  in Lyme, N.H. The time 
between horizontal scan lines in Figures 2 and 3 is 15 ns. Therefore, from 
equations 1 and 2, the distance between scan lines  within the water column  is 
0.25 m. The top and bottom of the ice can be seen in the record. The 
thickness of the ice  in Figure 2 was 0.64 m. The record also  shows the lake 
bottom  relief and what may  be several of the many  large boulders known  to 
rest on the bottom of the lake. The thickness of the ice in Figure 3 was 0.74 
m. 

The record in Figure 3 is important as it illustrates that the radar reflection 
signal strength is greater at the ice/water interface, as indicated by the darker 
print contrast, that at  the airlice interface. This is because the electromagnetic 
signal power reflection  coefficient is lower at the airlice interface than at the 
icelwater interface since there is a larger difference  in the dielectric constant 
between  ice  and water than between air and ice. The power reflection 
coefficient at the airlice interface (Ra-i) can be determined by: 

6-6 (3) 
Ra-i = [6 + 6 1  

where = dielectric constant of air and e2 = dielectric constant of ice 
surface. Since el is the dielectric constant of air and is equal to 1 and e2 is the 
dielectric constant of the ice surface, taken to be 3.2, then Ra-i is 0.08. 
Similarly, the power  reflection  coefficient at the ice/water interface (Ri-w) can 
be determined by: d q " 6 2 =  

Ri-w = [ & + 6 1  
where e3 = dielectric constant of water. 

coefficient (T) at the ice surface is: 
Assuming 3.2 for e2 and 81 for e3, then Ri.w is 0.45. The power transmission 

The signal power returning to the antenna from the ice bottom is determined 
by the total power reflection coefficient (RT) from: 

R, = [T * * T I 2  = 0.11 (6) 

Therefore, the signal  power  reflected  from the ice bottom  is at least 50% 
greater than that reflected  from the ice surface. Ice surface roughness or a 
snow cover will  modify these values, making the return from the ice  bottom 
proportionally larger. 

A similar contrast should exist where freshwater ice  is in contact with the 
lake bottom. This  will be true if the bottom sediment is frozen where E, is 
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approximately 4-8 or saturated silt or clay where E,  is on the order of  8-12. 
Therefore, the strength of the reflected  signal  from the bottom of lake ice 
should  be  an indicator of whether the ice  is in contact with water or soil. 

ALASKA FIELD STUDY 

During the spring  of 1976, Atlantic-Richfield Co. (ARCO)  was one of the 
very  few companies in the Prudhoe Bay area that did  not experience a water 
shortage, because in 1974 ARCO increased the depth of Webster Lake (Fig. 4) 
to create a storage reservoir with a capacity of 6 million barrels (9.5 x IO5 m3) 
of water (Fig. 5) .  It was estimated that with a 2-m-thick  ice cover, the lake 
would  yield  approximately 4 million barrels (1.5 x 104 m3) of water. When full, 
the lake was approximately 5.5 m deep. A typical cross section of the lake is 
given  in  Figure 6. This cross section was taken on 7 June 1975 at the position 
given  in Figure 5 and shows that the lake  has  relatively steep sides and a flat 
bottom. 

On 6 April 1976, the water depth near the pump house intake was 4.54 m 
and the ice thickness 2.01 m. 

A short profile run was  made  with the impulse radar antenna on the ice 
surface to ensure that the system was operating properly. Both the ice  and 
lake  bottom were detected as shown  in Figure 7. The dark signal  band  below 
that of the ice  bottom  is due to double reflection of the impulse  within the lake 
ice. The numerous horizontal bands on the record are system noise. 

FIG. 4. The  Atlantic  Richfield Co. camp  and  runway complex is shown in the lower  left and 
Webster  Lake  at center right.  The ice  cover  shows the  outline of Webster  Lake  before its 
boundary was  changed during  dredging  and  before  the  pumphouse was installed as shown in 
Figure 5. 
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FIG. 5. Present  outline of Webster  Lake  and  location of cross  section shown in  Figure 6.  
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d, the intensity of the reflection at the bottom of the ice is highest, as 
indicated  by the darkness of the graphic trace. These high  reflection “bright 
spot” areas indicate that water existed under the ice at these locations but 
that the remainder of the ice  along the profile  was probably in contact with the 
lake bottom. This was  confirmed  by  drill  hole measurements in the area of b 
in  Figure 10 which  revealed an ice thickness of 2.04 m and a water depth of 
approximately 4 cm at one site and 2.02 m of ice and 2 cm of water at another 
site. A drill  hole measurement at a site south of position a in Figure 10 
revealed an ice thickness of 1.63 m. Here  the ice was  in contact with the lake 
bottom. 

The radar data in Figure 10 were analyzed to remove variations due to 
aircraft motion; the resulting cross section, shown  in  Figure 11, indicates that 

FIG. 7. Impulse radar data taken from the ice surface of Webster Lake.  The sounding was made 
from the west side of the lake outward for about 75 m near  the position of the cross section shown 
in Figure 6. The  apparent increase in ice thickness at the shoreline is the result of the broad beam 
signal radiated by the antenna. The forward propagating portion of the radiated signal is first 
reflected fmm the lake shore ice interface before the  antenna is over  the interface. As the antenna 
moves closer to the interface the time of flight of the reflected signal decreases and this is 
displayed as a rising subsurface interface on the graphic record. 
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FIG. 8. Impulse  radar  record  obtained 
during a  helicopter  sounding  flight 
down  the  long axis of Webster Lake. 

, 
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FIG. 9. Big Lake and the  flight path  taken  during  impulse  radar  sounding. The British  Petroleum 
camp complex  can be seen  across the road  on the east  side of the lake. 
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FIG. 10. Impulse radar record obtained along the helicopter sounding flight path shown in Figure 
9 on Big Lake.  The "bright spots,"  dark  areas on the  record, indicate potential sites where water 
still exists under the  ice. 
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FIG. 11. Ice thickness cross section constructed by removing aircraft variation from the data in 
Figure 10 and calculating ice  thickness from equations 1 and 2. Note that where the ice was > 2  m 
in thickness (maximum winter growth), the bottom reflection was also the  strongest, indicating 
that  free  water existed under the  ice  cover  at  these locations. 

the south end of the lake has thinner ice than the north end, in agreement with 
the drill  hole measurements. Pools of water could  probably be found in the 
areas of a,  b, c and d where the ice is thickest and the radar signal  from the 
ice bottom is the strongest indicating an ice/water interface. 

SUMMARY 

This study shows that impulse radar is capable of  profiling lake ice 
thickness from the ice surface and  from the air, and also the bottom of a lake 
with a 2-m ice cover floating on 4.5 m of water. I t  has also been determined 
that because of the significant  difference between the radar signal  reflection 
coefficient at an ice/water interface and that at an ice/soil interface, it is 
possible to determine where lake ice is bottom-fast and where free water 
exists under the ice, and that this may  be accomplished  remotely  from the air. 
An airborne impulse radar system can therefore be  used to determine rapidly 
potential sites of water under ice-covered lakes and rivers in late winter. This 

historically, potable water becomes scarce during the winter. 

L 

I technique is  especially important on the North Slope of Alaska where, 
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