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ABSTRACT. During  the  last  hundred years, two widely opposing views  of the 
maximum  extent of the  Laurentide  Ice Sheet have prevailed at  diierent times. 
Between 1860 and 1940, it was  assumed that  ice  extent  along  the  eastern  seaboard 
was limited and  that ice-free areas persisted during  the Maximum of the Last 
Glaciation.  After 1940, this  interpretation was replaced by one  contending that 
all high coastal  mountains  were  inundated. This view,  proposed by the late 
R.F.  Flint, was  widely accepted as  fact  until the last few  years. This paper reviews 
the opposing interpretations  and analyses the  frequently equivocal field evidence 
and  the developments of thought responsible for them.  On  the basis of  field work 
carried out over the last twenty years, it is suggested that  the earlier viewpoint 
was the  more  accurate. A map is presented of the  author's conclusions regarding 
maximum ice limits. 

R~SUMÉ.  L'étendue  maximale de la  couche  glaciaire des Laurentides  le long de la 
côte orientale de  l'dmtrique  du Nord durant la derni2re  période  glaciaire. Au  cours 
des cent dernières années, deux opinions nettement opposées ont prévalu, selon 
les éuoques, quant l'étendue maxima de la couche glaciaire des Laurentides. 
De 1860 à 1940, il fut admis  que l'étendue des glaces le long du  littoral  oriental 
était limitée et  que des régions dépourvues de glaces persistaient au  cours  du 
Maximum  de la  Dernière  Période  Glaciaire.  Après 1940, cette  interprétation  fut 
remplacée par  une  autre, différente, qui soutenait  que  toutes les hautes montagnes 
côtikres étaient recouvertes de glaces. Cette  opinion, proposée par  feu R.F. Flint, 
fut admise  par  la  plupart  comme un fait,  il  y  a encore quelques années. L'auteur 
passe  en revue dans  cette  étude ces interprétations opposées, analyse les constata- 
tions, souvent équivoques,  effectukes sur place, ainsi que  la suite des réflexions qui 
ont  abouti à ces interprétations.  En s'appuyant sur les travaux effectués sur place 
au  cours des vingt dernières années, il suggèe que c'est la première interprétation 
qui est la plus exacte. I1 offre une  carte  pour  illustrer ses conclusions quant  aux 
limites extrêmes des étendues des glaces. 
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INTRODUCTION 

For  the last thirty-five years it has been  widely  assumed that  during  the last 
(Wisconsin)  glaciation  the  Laurentide  Ice  Sheet  overtopped all the high 
coastal  summits  from  Maine to  northern Baffin Island,  and  extended seaward 
as f a r  as  the edge of the  continental shelf. Further  north,  ice over Devon and 
Ellesmere islands has been  envisaged  as confluent with the  Laurentide  Ice 
Sheet,  and indeed as an  integral  part of it,  and  to  have merged with a much 
expanded Greenland  ice  sheet.  The  intervening seas - BaEn Bay and Davis 
Strait - are assumed to  have been covered by a floating ice shelf, if not 
actually occupied by grounded ice. This  “maximum Wisconsin viewpoint” 
emanates  from  the  epochal work of the  late  Richard  Foster  Flint. Yet prior 
to  1940  a  “minimum Wisconsin viewpoint” had prevailed, having been  devel- 
oped through fieldwork by  Bell (1884),  Chalmers  (1896),  Daly  (1902)  and 
Coleman (1920,  1921,  1922,  1926).  These  early  workers  argued  that  a  series 
of high mountain  areas,  including  the  Torngat of northern  Labrador,  Long 
Range of Newfoundland, the Shickshock Mountains of Gasp6 Peninsula  and 
various highlands of the  Canadian  Maritime provinces and New England, 
either remained as  nunataks  or else had been affected only by local  ice caps, 
cirque glaciers and valley  glaciers. Flint  (1943)  not only proposed an intellec- 
tually  attractive model for  Laurentide  Ice Sheet initiation  and growth but 
totally  overthrew  the  “minimum Wisconsin viewpoint” of his predecessors. 
This  stand  refuted  the conclusions drawn  from A.P.  Coleman’s work  in  the 
Shickshock Mountains  (Flint et al. 1942),  and was perpetuated by a  series of 
major  publications,  including  a  glacial  map of North  America  (Flint et d. 
1945)  and  three  text books (Flint  1947,1957,1971). 

During  the past twenty years,  there  has been a slowly  growing opposition 
to th is  aspect of Flint’s  work mercer 1956; Ives 1957,  1958%  1958b,  1960a; 
L@ken  1962a,  1962b,  1966; Andrews 1963; Boyer and  Pheasant  1974; Miller 
and Dyke 1974) which has  accelerated  in  the last few years (Grant 1969, 
1976, 1977a,  1977b; Brookes 1970,  1977;  England  1976a,  1976b; Dyke 
1977). Nevertheless, these  studies  have  dealt only with specific and  relatively 
small areas  rather  than with  the  entire  eastern  seaboard,  and the “maximum 
Wisconsin viewpoint” has remained entrenched  in high school and  university 
curricula,  and some recent  workers  continue to support  it  (Blake  1970,  1975; 
Hughes et d. 1977). Finally,  with  the need to  adapt  iceage  boundary con- 
ditions  as  input data  for  the recently developed global-atmospheric-circulation 
models (CLIMAP  1976),  there has  arisen  a  tendency to rely upon the  more 
easily  accessible and widely accepted ice sheet  margins,  as  represented by the 
“maximum Wisconsin  viewpoint.” 

Much of the  critical field data, which have been pivotal for these two 
extreme viewpoints, relate  to  conditions  on  the summits of high coastal moun- 
tains. Not only are many of these  data equivocal, but  adherents  to  each view- 
point have had to contend with the previous acceptance of false assumptions, 
such as the efficacy  of freeze-thaw processes in  Arctic  and  alpine  maritime 
environments,  and  the view that  striations  and  glacial  erratics  on  mountain 
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tops must date  from Wisconsin time. It is therefore timely to review the 
evidence and  arguments and to propose a new statement  on  the  extent of 
Laurentide ice along the eastern seaboard during  the  Last Glaciation. This 
“new” viewpoint largely reverts to  the contentions of Daly (1902)  and 
Coleman. However, neither of these workers fully interpreted local field con- 
ditions and;due to limited access, were not able to detect mountain-top glacial 
erratics that  later in the present paper will  be  shown to exist. It is proposed 
here that some of these erratics, such as were observed in  the Shickshocks by 
Flint et al. (1942) relate to a pre-Wisconsin glaciation of much greater  extent, 
or have been emplaced very early in the Cenozoic period of glaciations before 
the landscape had taken on its present form.  An  attempt will  be made below 
to  trace  the development of thought which  led to  the  total eclipse of the 
original “minimum” viewpoint in the early nineteen-forties. This review  will 
conclude with a plea for rigorous testing of working hypotheses, and the devel- 
opment of additional hypotheses, in an  area of intellectual enquiry that is 
still handicapped by a shortage of unequivocal data. 

The ideas and hypotheses discussed  below have evolved over a  hundred 
years. During this time estimates of the  duration of the Wisconsin Glaciation 
have varied considerably, and may still be incorrect.  To avoid  possible con- 

i fusion, therefore, this paper will refer  to  the “Last Glaciation” and will assume 
that it spanned the period 125,000 - 8,000 BP. Much of the  recent work on 
Baffin Island (Miller et al. 1977; Andrews and Barry 1978) has shown that 
early stades of the  Last Glaciation were more extensive than the later stades - 
the reverse of conditions which existed in mid-continental North America and 
with regard to which the classical Ice Age  terminology  evolved. J.T. Andrews 
(INSTAAR, personal communication, 1978) and  Miller et al. (1977) prefer 
the  term  “Foxe Glaciation” for  the  Last Glaciation on Baffin Island; in north- 
eastern Labrador-Ungava the  term “Saglek Glaciation” (Ives  1976) might 
be appropriate. But to postulate that “Foxe”, “Saglek” and “Wisconsin” are 
synonymous terms is to risk  over-simplifying a complex situation. The  term 
“Last Glaciation” will therefore be  used to imply  Wisconsin - Wiirm - 
Weichselian  in a general sense and to refer to  a glacial  episode characterized by 
three or  four distinct stades. Where the context is clear, local equivalents will 
be used. Finally, in discussing the dispute between adherents of a “maximum 
Wisconsin viewpoint” and a “minimum Wisconsin viewpoint”, it needs to be 
pointed out that  at issue  is  how extensive, both vertically and horizontally, was 
the  Laurentide  Ice Sheet at  the various Last Glaciation Maxima. Thus  there 
are two concepts that need to be differentiated: (a) the  interpretation of ice 
conditions at  the maximum extent of any, or all, stades of the Last Glaciation, 
and (h)  the hypothetical discussion about  a large or small glaciation, as 
exemplified  by the terms “maximum Wisconsin viewpoint” and “minimum 
Wisconsin viewpoint”. The two concepts will  be differentiated by use of ‘the 
upper and lower case “my’ respectively. 

Results of more recent work (Grant  1977a,  1977b; Dyke 1977) indicate that 
the most recent weathering zone (Zone A) may relate to the Late Wisconsin. 
However, the discussion in the present paper cannot be restricted to Late Wis- 
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consin conditions until comparable detailed fieldwork has been undertaken along 
the entire coastal area under consideration. 

DEVELOPMENT OF THE “MINIMUM WISCONSIN VIEWPOINT” 

Lieber (1861), Bell (1884), Daly (1902) and Coleman (1920,  1921) 
argued that  the coastal mountains of northern  Labrador  had never been over- 
topped by the  North American  continental ice sheet. Bell, Daly and Coleman 
refer  in  the above-cited works to a Labradorean ice sheet or glacier; in 
1943 Flint made the  important  contribution of successfully arguing that 
“Labradorean” was inappropriate usage and proposed the  term  “Laurentide 
Ice Sheet”, as originally  defined  by  J.W. Dawson and modified  by T.C. Cham- 
berlin,  and  his  usage  won total acceptance (Prest 1970; Ives et al. 1975). Daly 
(1 902 p. 249) reported that glacier  ice  passing seaward to the Atlantic along  major 
through-troughs in the Torngat Mountains did not exceed in altitude  about 
650 metres in the vicinity of the fiord heads. This conclusion was  based upon 
recordings of the highest levels at which glacial erosional and depositional 
features are  to be found as  well as  the all-pervading presence of the felsenmeer 
(blockfields of frost-shattered bedrock).  The only variations in  this  pattern 
were the local cirques that were cited as evidence of local glaciation at higher 
levels. Except for occasional outlet glaciers penetrating  through  the mountains 
from  the west, Daly regarded the Torngat  as “a great  dam facing the central 
nCvC  of Labrador which thus lay on  the Kangiva (Ungava  Bay) side” (Daly 
1902 p. 225). Kangiva was a name given to  the supposed flat, low-lying land to 
the west, above which the western flank of the  Torngat  Mountains was  believed 
to rise precipitously. This lack of full appreciation by Daly and Coleman, as 
well as by Flint (see Mercer 1956; Ives 1957; Ives et al. 1975) of the actual 
topographic character of these mountains made it difficult for them  to  put for- 
ward rational  interpretations of their glacial history. Coleman (1921), who 
undertook fieldwork during the summers of 19 15 and 1916, generally supported 
Daly’s conclusions, although he argued that  no “Labradorean” ice had been 
able to penetrate  the  mountains to  the Atlantic fiords and  that all glacial 
activity  was restricted to local cirque, valley and transection glacier  systems. 
He reinforced Daly’s  viewpoint that  the  sharp aretes of the coastal mountains 
and deep felsenmeer on  the higher surfaces further inland were ample evidence 
that  the higher summits had never been inundated by ice. Coleman’s subsequent 
field studies in Newfoundland, Gasp6 and  other  areas  around  the Gulf of St. 
Lawrence led to  the maturation of the “minimum Wisconsin viewpoint”, and 
an insistence that felsenmeer indicated non-glaciation, except possibly where 
local ice caps existed. Coleman even went so far  as  to suggest that  the  main con- 
tinental ice sheet had not reached the southeastern coast of Labrador  during 
the Wisconsin Glaciation (Coleman 1921 pp. 26-27;  1926 pp. 216-7). His 
work on the island of Newfoundland led to  the identification of three land- 
scape types that varied in degree of subaerial weathering (Coleman 1926). 
While he did not delimit three “weathering zones” at different altitudes - an 
approach that  has recently come into vogue (Pheasant  and Andrews 1973; 
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Boyer and  Pheasant 1974; Ives 1975; Brookes 1977; Grant 1977a) -it is 
quite clear from his descriptions that  he had used the presence of felsenmeer as 
indication of a non-glaciated area (including the higher parts of Long  Range, 
as well as  the  outer  parts of the  northeastern peninsulas). He also described an 
intermediate type bearing obvious indications of glacial erosion and deposition 
that was noticeably weathered that  he ascribed to a glaciation antedating  the 
Wisconsin and an essentially unweathered type which he considered to denote 
the existence of limited, local ice caps in a late  stade of the Wisconsin.  Coleman 
was obviously  influenced  by the botanical work of Fernald (1925) who  applied 
to  northeastern  North  America  the  Scandinavian  Nunatak  Hypothesis as a 
means of explaining the existence of disjunct and  endemic plant species  in 
these mountain areas (Dah1 1955). 

ASCENDANCY OF THE “MAXIMUM WISCONSIN VIEWPOINT” 

In 1931, Noel’ Odell, British geologist and  Himalayan  mountaineer, ac- 
companied  the  American  Geographical Society’s Alexander  Forbes expedition 
to  northern  Labrador. Odell climbed  extensively in the  Torngat  Mountains, 
and in addition to greatly improving the then existing notion of the topogra- 
phical characteristics of these mountains,  he  concluded that,  contrary  to 
Coleman and Daly, Laurentide ice had completely overtopped all, or most of, 
the high mountain  summits  during  the  Last Glaciation. He described  poorly 
preserved striations which  existed at 1,446 metres  and  argued strongly that 
felsenmeer, as a product of vigorous freeze-thaw frost-shattering in Arctic 
maritime climates, could easily have been formed since the maximum of the 
Last Glaciation (Odell 1933, 1938). When the present author  attempted in 
1956 to re-examine  Odell’s  field area  he was  led to dispute the  interpretation 
of Odell,  although the latter’s report of high-level erratics in the Komaktorvik 
Lakes  area (59’1O’N, 64OOOW) - even though these were  not precisely 
located - would appear reasonable, except for their being  ascribed to the 
Last Glaciation. Tanner and  Flint uncritically adopted Odell’s  conclusions. 
This  acceptance of Odell’s refutation of the views of Daly and  Coleman was a 
crucial turning point. It illustrates very  well the ease with  which the  “minimum- 
maximum  Wisconsin”  pendulum  swung. The whole matter is worth  examining 
in some  detail,  since this question of maximum  ice  thickness on coastal moun- 
tains has been characterized on  both sides of the  Atlantic by emotion  and 
strongly defended contentions. In his extensive work on  Labrador,  Tanner 
(1944 p. 184) writes: 

On one  summit of the  central  range of the  Torngat Mts. there was 
evidence of ice-polished surfaces at 4,700 feet [approx. 1,400 m], 
nearly 3,000 feet above what was thought by others  to be the max- 
imum extension of the inland-ice.  Some of these remains of i c e  
polished surfaces were to some extent corroded  and the present 
erratic blocks are often superficially weathered. This is however not 
surprising, if due  account  be  taken of the particular climatic con- 
dltions of the region. In  the  northern  part of the mountains, at 2,250 
feet [690 m]  above  sea  level,  slabs were  found  with signs of glacial 
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polish - evidence that  the regional ice had moved across the range 
towards the north-east. On  the south-east slopes of Point 3,620 feet 
[1,100 m] in  the  Kaumajet Mts., ODELL also found bare, coarse 
lava surfaces, showing ice-planation, though with partial decay, and 
it seems to him probable that this planation was due  to  the last glacia- 
tion. Here no unequivocal erratic  material could be found. 

The opinion expressed by ODELL,  one of the most experienced 
and far-travelled glaciologists of our time, is conclusive for  the writer. 
During  our discussion in his home in Cambridge in 1937, he fully con- 
vinced  me that COLEMAN’S [1921] and  FERNALD’s [1925] thesis 
that  the higher parts of these mountains formed  nunataks  during the 
last ice age can no longer be maintained. The inland-ice of the 
Wisconsin epoch completely inundated even the highest mountains 
of the peninsula. Through  the great transverse valleys of the Torngat 
Mts. it sent mighty, relatively swift land-ice currents  out over the 
continental shelf to  the Atlantic, whereas the ice on  the lofty upland 
moved but slowly forwards in  the same direction. How far  on  the 
shelf the land-ice reached is a question on which the writer is not 
prepared to give an opinion. 

Thus  Tanner, representing the Fenno-Scandinavian opposition to  the Nuna- 
tak Hvpothesis, accepted Odell’s limited and  rather vague observations of 
weathered-bedrock lineations and high-level erratics  as  adequate,  without him- 
self having set foot in the Torngat Mountains. 

The next step towards the overthrow of the “minimum Wisconsin view- 
point” was the publication of a paper by Flint, Demorest and  Washburn (1942) 
following their excursion to  the Shickshock Mountains. Because of its critical 
position in  the development of Wisconsin glacial concepts the entire  abstract 
of that paper is reproduced here: 

The Shickshock Mountains constitute  one of the highland areas 
that have been considered by Coleman on geologic  evidence, and by 
Fernald on botanical and geologic evidence, to have been nunataks 
during  the maximum of Wisconsin glaciation. 

Recent field studies have been made on the two highest parts of 
the Shickshocks - the broad plateaulike masses known as  Mount 
Albert  (summit  altitude 3,775 feet [ 1,150 m] ) and  Tabletop Moun- 
tain (4,230 feet [1,290 m]). Glacial erratics possibly derived from 
Pre-Cambrian rocks from  north of the St. Lawrence were found as 
high as 3,760 feet [ 1,145 m] on Mount Albert. On  Tabletop Moun- 
tain, striated surfaces were found as high as 3,500 feet LO70 m], and 
glacial erratics (of local origin) as  high as 3,700 to 3,800 feet [1,125- 
1,152 m]. Detailed search failed to produce any direct evidence of 
glaciation through  the highest 400-500 feet [ 120-150 m]. Throughout 
this distance evidences of any possible glaciated surfaces are obscured 
by mantles of locally derived felsenmeer that presumably originated 
in postglacial time. In addition, the composition of the bedrock is 
so heterogeneous that several types of erratic stones might be present 
without having been recognized. These  circumstances do not  demon- 
strate  glaciation of the highest parts of Tabletop Mountain:  yet  there 
is no  geologic  evidence  inconsistent with  the possibility  that the entire 
Shickshock highland was  overtopped b y  Wisconsin  ice [present writer’s 
italics]. No geologic evidence was found suggesting that any  portion 
of the  area existed as a  nunatak  during  the Wisconsin maximum. 
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During the waning stages of glaciation,  and possibly earlier, Table- 

Flint, Demorest and  Washburn (1942) took  the view that locally derived 
felsenmeer  “presumably originated in postglacial time” and that what were 
undoubtedly glacial erratics, 150 metres vertically down from  the summit 
of Mount  Jacques  Cartier,  must  date  from  the Late Wisconsin. The three 
writers, while expressing some reservations, nevertheless extend  their con- 
clusions of total  Late Wisconsin  submergence of the Shickshocks by Laurentide 
Ice to  the  Torngat  Mountains  and  Long  Range. Having visited Mount Washing- 
ton, New Hampshire,  after  their Shickshock fieldwork, they agreed  with 
Goldthwait (1940 pp. 17-19) that, “on the basis of rare  though unmistakeable 
striae, till,  and erratic stones”, Mount Washington  summit  was  overtopped  “by 
glacier ice within late Pleistocene time” (Flint et al. 1942  p. 1225). 

The following year, in a paper on the growth of the  North American ice 
sheet during the Wisconsin age, Flint (1943) develops  such an excellently 
reasoned and intellectually stimulating thesis that the  “maximum Wisconsin 
viewpoint”  became central to  the  North American concept of the  Last 
Glaciation. 

top was the site of radial outflow from a local ice cap. 

CURRENT STATUS OF THE “MAXIMUM WISCONSIN VIEWPOINT” 

In Fig. 1 is depicted Flint’s (1971) portrayal of the maximum extent of 
the  Laurentide  Ice Sheet at  any time  during  the  Quaternary ice ages. Flint 

FIG. 1 .  Outline of major 
continental  ice  sheets in 
North  America,  regard- 
less of age  and  east of the 
Cordillera.  Modified  from 
Flint 1971 p. 478. 
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(1971 p. 677) states that  the  “area glaciated by the  (Laurentide) ice sheet, 
combining glaciations of more than one ice age, is  believed to have totalled 
nearly 13.4 x 106 km2. However,  the Late Wisconsin ice sheet was smaller, 
having  possibly about 90% of the  area quoted.” Regardless of the problem of 
Laurentide Ice Sheet extent, the northeastern subdivision,  shown  as  the 
“Ellesmere-Baffin Glacier Complex” (after Craig and Fyles 1960), is an 
anomaly. since  ice  over the Queen Elizabeth Islands has long since been  shown 
to have remained separate from  that  over Baffin Island. Evidence supporting 
this interpretation includes ice-flow patterns (Ives and Andrews 1963) and tilt 
of west-coast, marine-shore  features of BaEn Island up toward  the southwest 
(Andrews 1966) indicating that ice over Melville Peninsula - Foxe Basin - 
Baffin Island formed a great northern  dome subsidiary to  the main centre over 
Hudson Bay,  while the ice cover of the  Queen Elizabeth Islands occurred as a 
dvnamically independent ice cap, or series of ice caps (Andrews 1970; Blake 
1970). Flint (1971 p. 484) postulates that  “at one  time  or  another during 
the Wisconsin Age the ice sheet overtopped all the highlands between  New 
York  and  Labrador”. He then provides  estimates of minimum  ice  thicknesses, 
indicating total  submergence of, for instance, the Shickshock  Mountains,  Long 
Range  and  the  Torngat  Mountains.  (Flint 1971 p. 486) also  discusses  briefly 
the question of the  Nunatak Hypothesis  and possible  Wisconsin plant refuges 
on the east-coast mountains in which he recognizes that, while  most localities 
have been  shown to have  been glaciated on the basis of geologic  evidence,  in 
some  cases “the higher  glaciation antedates the Late Wisconsin”. 

Close examination of Flint’s writings over the years 1942 to 1971 indicates 
a rather complete  commitment on his part to each of two associated  theses: 
(a) that “highland origin and windward growth” of ice masses provide the 
best explanation of the initiation and  development of the  Laurentide  Ice Sheet; 
and (b)  that such  development resulted in ice sufficiently thick for  the highest 
summits of those very highlands to be inundated by easterly flowing  ice during 
Wisconsin, and specifically during  Late Wisconsin,  time. The &st of these 
theses has been challenged (Ives et al. 1975; Andrews and M a h a y  1976) and 
it is only necessary here to point out that  its  refutation does not necessarily 
invalidate the second  thesis,  which  is central to  the present paper. The strong 
commitment  to the second thesis is evident from a glacial map of North 
America of Flint et al. (1945). The following example will serve to illustrate 
this point. If a large (maximum Wisconsin viewpoint) Laurentide  Ice Sheet 
is to  be envisaged, then glacio-isostatic depression and late-glacial/postglacial 
recovery of the  land relative to sea level  would  be anticipated along the  north- 
eastern coast of  BafEn Island. The same glacial map indicates the presence of 
marine-shore  features  along the BafEn Island fiords raised to considerable 
elevations. The original source of some of these data is a paper by Wordie 
(1938). Examination of this paper, however,  reveals  Wordie’s great uncer- 
tainty  whether terraces 250 metres  above sea  level, and only identified from 
shipboard, were of marine origin and comparable to much lower, and definitely 
marine, features seen along the  outer coast. Field reconnaissance in 1962 by 
the present author revealed that  the terraces in question were  lateral  moraines 
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and  kame  terraces,  and  that  the Holocene marine limit along the  entire length 
of northeastern Baffin Island varied between zero and  about 50 metres above 
present sea level (Ives 1963a). This conclusion has since  been substantiated 
(Dyke 1974). While subsequent glacial maps of Canada and  the United States 
(e.g., Wilson et al. 1958;  Flint 1959; Prest et al. 1968) do not  retain such 
exaggerated notions of Holocene marine-limit elevations, the example given 
serves to  demonstrate a certain eagerness to  interpret ambiguous data in such 
a way as to accommodate an intellectually attractive hypothesis. An identical 
criticism can be made of the ready acceptance by Tanner (1944) and  Flint 
(1943, 1957) of Odell’s (1 933, 1938) observations, and of Flint’s interpre- 
tation of his  own observations on the Shickshock Mountains  and Long Range 
(Flint et al. 1942). 

As has been indicated above, the  fact that two  widely contradictory view- 
points developed derives at least in part  from  the existence of the somewhat 
ambiguous evidence of the  actual mountain-top conditions. Some further 
ambiguity may  be the result of changes over the last thirty years in concepts 
of the length of Wisconsin (Last  Glaciation)  time and its character (bi-modal 
or tri-modal). However, it was already apparent  in  the early writings of Flint 
that  the Wisconsin could be  conceived of as a two-phase glaciation with an 
intervening interstadial. Whether 25,000 or 14,000 years have  elapsed  since 
the Maximum of the final  Wisconsin event will have no bearing on the  rate 
of weathering and production of the controversial summit blockfields. Never- 
theless, both Shickshock erratics  and blockfields were still related to the  Late, 
or “classical,” Wisconsin Maximum and postglacial time, respectively. Cer- 
tainly, much of the divergence of view arises from Odell’s (1933, 1938) 
belief in vigorous freeze-thaw processes in Arctic and alpine maritime climates 
and  from Flint’s acceptance of this opinion (Flint et a1. 1942). A somewhat 
similar situation relating to  the development of ideas concerning glaciation of 
the  Maritime provinces of Canada is  discussed in a paper by Grant  (1977b) 
from which it appears that  the early work of Goldthwait (1924) refuted  the 
conclusions of Chalmers (1896) and  created an effective mental blockage to 
a moIe flexible  field interpretation  until  the nineteen-seventies. 

COASTAL MOUNTAIN-TOP CONDITIONS AS EVIDENCE 

In simplest terms, the ambiguous evidence is the deep rubble of presumably 
frost-shattered bedrock that covers many of the broad, high mountain tops 
situated on both sides of the  North  Atlantic,  and  the occasional anomalous 
blocks found within the rubble, which are sometimes assumed to be glacial 
erratics  and at other times are interpreted  as weathered-out inclusions, or  other 
locally-derived material. The rubble is variously termed  “mountain-top de- 
tritus”, “felsenmeer” or “blockfield”. In more detailed treatment,  tors,  or 
tor-like forms (Dah1 1966), weathering pits, tafoni  and associated weathering 
forms, including clay mineral development, are described. The mountain-top 
detritus can be regarded in two  ways:  according to the interpretation of  Bell, 
Daly and Coleman, such extensive weathering took far longer than  the  time 
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available since the Maximum of the Last Glaciation; while according to  that of 
Odell, Tanner  and Flint, weathering in these environments is so rapid that 
full development of mountain-top  detritus  can  be readily assumed to have 
been  possible since the  Maximum of the Last Glaciation. Each of these two 
schools of thought can also be respectively  characterized  by its acceptance of, 
or opposition to, the Nunatak Hypothesis - that is,  by its standpoint in the 
controversy over  whether plants and animals survived the Last Glaciation in 
ice-free areas. within the “mountain .groups under  ~corrsideratim. It ,is a€so un- 
fortunate that not only is there no directly  available information concerning 
actual  weathering rates, ‘but  it is not  known precisely what processes are 
operating, or have operated in the past, to produce  such  forms  as detritus, tors 
and  weathering pits.  Also, detailed geological maps of bedrock are  not avail- 
able for most of the area under consideration, so that  the provenance of the 
anomalous blocks  is frequently a matter of guesswork. Thus again, “opinion” 
- or  rather, preconceived ideas -have frequently influenced interpretation 
of the admittedly equivocal, and  until recently very scanty, field data. The 
school of thought that insists that mountain-top  detritus is the result of rapid 
breakdown of bedrock  often finds  itself forced into special  pleading to account 
for  the  “poorly preserved striations” and high-level  glacial erratics upon which 
depends their hypothesis of total glacial inundation. This notwithstanding, the 
early supporters of the  “minimum Wisconsin  viewpoint” failed to find erratics 
in the  summit areas. The present author,  from his familiarity with the high 
mountains along the Baffin Island and  Labrador coasts, can easily understand 
the failure of Bell, Daly  and Coleman to discover  obvious  glacial erratics  above 
about  650 metres, although  Flint is  justified  in criticizing Coleman for ac- 
counting  for,  or explaining away, the Shickshock Mountain erratics (Flint 
er al. 1942). 

During early fieldwork in the  Torngat  Mountains (Ives 1957, 1958a, 1958b, 
1960a),  the present author was  perplexed  by the conflicting interpretations of 
the  same field  evidence. His personal concern  over the chances of misinter- 
pretation of the significance of certain anomalous  blocks on high  summits and 
ridges  remained  with him until an opportunity arose to revisit the area  in  1975 
(Ives 1976). This concern  was  heightened  by  Loken’s  very appropriate challenge 
which  argued that the  anomalous  blocks  were the product of differential  weather- 
ing,  which  itself  clearly  reflected the difficulties that faced Daly and Coleman 
(Lgken 1962a, 1962b). Yet by the early nineteen-sixties it was quite clear that, 
regardless of the problem of interpreting the significance of the anomalous  sum- 
mit  blocks, three altitudinally-arranged  zones of differing  degrees  of  weathering 
could  be  identified  over  wide areas of coastal northern Labrador, rather than the 
two  zones of glaciated  lower areas and frost-riven  higher areas described  by Daly 
and Coleman  (Ives 1958a, 1958b, 1960a, 1963b; Tomlinson 1958, 1963;  Loken 
1962b; Andrews 1963; Johnson 1969). Furthermore, this identification  was soon 
extended to northeastern Baffin Island (Loken 1966; Ives 1966, 1974;  Pheasant 
and Andrews 1973 ; Andrews 1974). 

The obvious next step was to  date one or  more of the  three weathering  mnes. 
The least difficult to  date was bound to  be  the lowest,  since its  upper (and 
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outer) limit is frequently demarcated by extensive lateral  and terminal mo- 
raines. In the  Torngat  Mountains these have been named the Saglek Moraines 
(hes  1976); in northeastern  and eastern Bailin Island they  have been named 
the  Alikdjuak  Moraines  (Pheasant  and  Andrews 1973; Andrews  and Miller 
1972). As a result of the ensuing teamwork, deposits began to be located that, 
by radiocarbon  and uranium-series dating techniques, were  proved to be older 
than  the maximum of the  Late Wisconsin (L@ken 1966; King 1969; Ives and 
Buckley 1969; Pheasant  and  Andrews 1973). A good indication was thereby 
provided that  the lowest weathering  zone occupied the  area  covered by  ice 
during the  Maximum of the  Last Glaciation. Already in 1957, however, it 
was apparent  that  the  assumption  that  mature  mountain-top  detritus could 
form in late-glacial/post-glacial time was probably invalid. This conclusion 
was based upon  deduction from observations that showed  some summits to be 
covered with  mature  detritus  and  others with firm, ice-moulded bedrock along 
the geological strike, when the only  difference  between the  two types of summit 
was that  the  latter were 150-200 metres lower  in elevation than  the  former 
(Ives 1958b). The only remaining controversy among  the  team  workers re- 
ferred  to above  was whether  or  not  the highest zone  (Torngat  Zone,  or  Zone I 
of Boyer and  Pheasant 1974) had ever been overtopped by  moving  ice such 
as could  allow emplacement of glacial erratics. At  the  moment, this con- 
troversy can best  be handled by hypothesizing that some mountain tops that 
are characterized by weathering of the  Torngat  Zone type were  never over- 
topped  by  flowing  ice  bearing erratics (Lgken 1962; Ives  and  Buckley 1969; Ives 
and Borns 1971; England  and Andrews 1973; Boyer  and Pheasant 1974), while 
other summits  showing the same  weathering characteristics most  certainly had 
been  covered  (Ives 1966, 1974, 1975, 1976; Ives et al. 1976; Sugden and 
Watts 1977). This anticipates one of the subsequently proposed working 
hypotheses- that  four,  rather  than  three, primary  weathering zones may 
exist. In this sense, the  term  “Torngat” is  reserved for  the highest, possibly 
uhglaciated, zone and a new term - “Komaktorvik” - is introduced for  the 
zone characterized by extreme  weathering  phenomena  and glacial erratics (see 
below). This aspect of the discussion,  however, has been further enlivened  by 
the recent work of Sugden (1968, 1974, 1977) who argues that mountain-top 
detritus, tors  and delicate weathering  phenomena could have been  preserved 
on high mountain tops due to  the hypothesized occurrence of thin, cold-based 
ice  which  was still able to emplace glacial erratics, while the less-weathered 
lower  zones  were abraded by the thicker, warm-based  ice that flowed along 
the  major valleys and through-troughs. However, Sugden certainly does not 
challenge the conclusion that these mountain-top  weathering  phenomena could 
not have  been  developed entirely since the  Late Wisconsin maximum. 

RECENT  EXTENSIONS OF THE WEATHERING ZONE CONCEPT 

In recent years Grant (1969, 1976, 1977a, 1977b) and  Brookes (1970, 
1977) have  undertaken detailed field studies in Newfoundland and the 
Maritime provinces of Canada. These. together have resulted in a reappraisal 
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of the early work of Coleman and  Flint  and  the widespread acceptance of the 
existence of three  weathering zones. In consequence,  there is need for a return 
to  the “minimum Wisconsin  viewpoint” of Daly and  Coleman. Similarly, after 
initial’  work on this problem in Baffin Island, England  (1976a,  1976b) has 
gathered extensive evidence from  Ellesmere Island which would indicate that, 
contrary  to  the views of Blake  (1970,  1975),  the  Queen Elizabeth Islands 
had a relatively limited ice cover  during the Last Glaciation and  that Blake’s 
hypothesis of a Wisconsin Innuitian  Ice Sheet should  be replaced by one of 
a much  more restricted ice cover as conceptualized in the term  “Franklin  Ice 
Complex”. Most recently Dyke, after field studies in B a n  Island (Miller and 
Dyke 1974; Dyke 1977), has concluded, on  the basis of weathering  phenomena, 
that  the  northern perimeter of the  Laurentide  Ice Sheet in the vicinity of 
Somerset Island must  be considered to have been much less extensive than is 
currently assumed (Dyke 1976; Netterville et al. 1976).  Koerner  (1977) has 
indicated that  the hypothesis of greatly restricted Wisconsin ice in the Queen 
Elizabeth Islands would more readily match  interpretations of the stratigraphy 
of deep ice cores from Devon and  Ellesmere islands. 

On  the basis of the foregoing discussion, a preliminary indication of ice 
extent  at  the Maximum of the Last Glaciation of eastern and  northeastern 
North America is presented here in the form of a fold-out map (Fig. 2). 
Several qualifications  need to  be made. First,  it  has become increasingly ap- 
parent that raised marine-shore  features  and  marine deposits in  northeastern 
BafEn Island, which antedate the Late Wisconsin  Glaciation, and possibly the 
entire  Last Glaciation, are widespread (Lbken 1966; Andrews 1978; Miller 
et al. 1977). Such  features  are frequently to be  found between Cape  Dyer 
(66O4O’Ny 6 1 O l O W )  and Sam Ford  Fiord (72OO(YN, 7l0o(Yw),  and in 
Cumberland  Sound at elevations of 20-80 metres (i.e. higher than  the Holocene 
marine limit  in the  same area). Secondly, a similar conclusion seems  valid for 
raised marine-shore  features  on  Newfoundland (Grant  1977b), which Flint  had 
interpreted as being Holocene in age  and whose existence he  had also  used to 
strengthen his contention that ice from  Labrador had overtopped Newfound- 
land during the last Wisconsin  Maximum.  Thirdly, the h t  radiocarbon dating 
to before the maximum of the  Late Wisconsin Glaciation (30,000 BP or 
more) has recently been obtained as a result of analysis of marine mollusc 
shells in northern  Labrador (Ives 1977).  It would therefore seem  advisable to 
anticipate  future discoveries of Wisconsin interstadial and/or  preWisconsin 
raised-marine-shore features in this vast and still littleknown area. 

The outline of the  Laurentide  Ice Sheet and associated ice-cap margins in 
eastern and  northeastern  North  America presented in Fig. 2 is therefore based 
on  the assumption that a  minimum of three  weathering zones  exist and  can  be 
correlated. It also  implies that  the (altitudinally) lowest weathering  zone - 
Sag€& - - ( I v e s - - ~ P ; r B ~ ~ - - Z e ~ e - ~ € - ~ - ~ ~ - - A  
(Grant  1977a) - represents terrain  that was covered by Last Glaciation ice 
(combined  maximum of all stades),  while  the  zones of greater intensity of 
weathering  were either ice-free or covered  only by thin,  stagnant  or cold-based 
ice for all, or  part  of,  the  Last Glaciation. 
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The Baffin Island section of Fig. 2 is to some extent representative of infor- 
mation included in an earlier map  (Ives  and  Andrews  1963 p. 43).  It also takes 
account of a recent map by Miller and  Dyke (1974 p. 128).  The  fact  that  the 
relevant section of Fig. 2 displays striking similarities to these other  maps is by 
no means coincidental. Some key items relating to critical areas about  which 
little or nothing has been  published  serve to augment  the  map information. 
The  Button Islands, lying immediately  north of Cape Chidley (60"31'N, 
64" 15W) , while bearing widespread evidence of glacial abrasion, have bed- 
rock  surfaces sufficiently disrupted by weathering processes for  the possibility 
to arise of their being  classified within the intermediate weathering  zone 
(Koroksoak, or  Zone 11, or  Zone B) (J.P. Johnson, Jr., personal communica- 
tion, November 1977). They  are  therefore represented on  the  map as having 
likely lain beyond the outermost  Laurentide  Ice Sheet limit of the Last Glacia- 
tion, a fact which  would justify speculation that Resolution Island, on  the 
north side of Hudson  Strait, occupied a similar position. A.S. Dyke (Geological 
Survey of Canada, personal communication,  1978 ) is of the opinion that these 
"older" weathering surfaces may  be more correctly considered to have  developed 
since their abrasion by  ice during an early, more intensive, stade of the  Last 
(Wisconsin) Glaciation. This  interpretation, again, points to  the need to 
differentiate weathering surfaces that may relate to  the various stades of the 
Last Glaciation. 

This general description of the eastern entrance  to  Hudson Strait would 
seem to be supported by  evidence for a  fall in the Holocene  marine limit north- 
ward along the  Labrador coast until it passes  below present sea  level a few 
kilometres south of Cape Chidley  (Lqjken 1962a), and a similar fall in marine 
limit level southward  along the Baffin Island northeastern coast to about 
present sea  level at Cape  Dyer  (Miller 1975; Andrews 1978)  and  to below 
present sea  level in southernmost Baflin Island (G.H. Miller, INSTAAR, 
personal communication,  October 1977). A  partial exception is LZken's 
(1962a) fifteen-metre  horizontal strandline that  he correlated with the Tapes 
transgressions of Fenno-Scandinavia since this is interpreted as resulting from 
a post-glacial marine  submergence  which affected the  entire area. The notion 
that the ice  cover in the vicinity of eastern Hudson Strait was  very limited 
during the Last Glaciation is at least indirectly supported by Mercer's  work  on 
Meta Incongnita Peninsula, although not by his interpretation of terraces of up 
to  450 metres in height as raised marine-shore  features  (Mercer 1956). Well- 
developed detritus is to  be  found  on  the  summits of mountains  on  Lady 
Franklin and  Monumental islands. These islands lie 45 kilometres off the 
eastern coast of Hall Peninsula, Baffin Island (62"50'N, 63"45'W) and the 
present author assumes that they were situated well  beyond the  maximum 
limits of Last Glaciation ice  (see  Ives 1963b p. 349). 

FIG. 2 (fold-out).  Reconnaissance  map  of  the  eastern  perimeter of the  Laurentide  Ice 
Sheet  at  the  combined  maxima of the  last  glaciation.  Areas  of  local,  dynamically  independent 
ice  caps  are  shown  schematically  only.  Profiles A-A' to F-F' have  reference to the  respective 
parts  of  Fig. 4. 
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While  in the vicinity of Hopedale (55"31'N, 6O0O5'W) and  Makkovik 
(55"05'N, 59"lO'W) on the  Labrador coast in 1956  and 1957, the present 
author was able to record that  the  bedrock of the highest summits  (i.e., those 
of up  to  600  metres  above sea level) was both minimally weathered  and 
glacially  moulded and polished. Thus  the  outer limit of the  Laurentide  Ice 
Sheet during the Last Glaciation is situated well to  the east of the present 
coastline of this part of Labrador. In addition, the high  block of the Mealy 
Mountains seems to have been  ice-covered (Gray  1965) , but warrants  more 
detailed  field investigation (Ives 1960a).  There remains  the southeastern 
corner of Labrador facing Newfoundland where, from  the descriptions of 
Coleman (1921, 1926) it would appear that Labradorean (i.e., Laurentide) 
ice  never reached tidewater during the  Last Glaciation. Coleman also drew 
attention  to small areas in the vicinity of Cartwright (53"40'N, 57'05'W) 
which, on the basis of the existence of indurated till, presumably of  pre- 
Wisconsin  age, and local summits with intermediate weathering, he concluded 
remained ice-free during the Last Glaciation (Coleman  1921 pp. 26-27). 
Nevertheless,  although  the Laurentide Ice Sheet  limit  is  shown to lie  inside the 
present  coastline of southeastern Labrador (see  Fig.  2), this conclusion  should  be 
regarded as tentative until the results of additional observations become 
available. For Newfoundland  and  the Gulf of St. Lawrence in general, reliance 
is placed upon  the work of Prest and Grant  (1969),  Grant  (1976, 1977a, 
1977b)  and  Brookes  (1977).  It is also  assumed that  the Shickshock  glacial 
erratics  (Flint et al. 1942)  are pre-Wisconsin. However,  the situation in the 
Presidential Range of New England is more complex, and  the  careful restate- 
ment of Goldthwait (1970) would indicate the need for  more work on the 
high mountains of New England. 

There  remains  a  profound problem to be  solved before a  map of the 
Laurentide Ice Sheet, such  as Fig. 2, can be fully substantiated. The present 
argument is  based upon  the  assumption that  a  certain degree of surface  weather- 
ing  in an  Arctic  stretch of the eastern seaboard is not only the product of 
subaerial weathering during a particular period of time, but that  a similar 
degree of weathering, 1,OOO kilometres further  south, developed over approxi- 
mately  the  same period of time. In  other words, the assumption is made that 
Zone I, for instance, of Boyer and  Pheasant (1974) is the  time equivalent of 
the  Torngat  Zone of Ives (1958a,  1975),  and of Zone C of Grant  (1977a). 
Such  a correlation is reasonable as  a first approximation, despite a considerable 
range in climates and microclimates between northern Baffin Island and 
Newfoundland,  and despite the  almost  certain persistence of such  a  range 
through  the last 100,000 years or  more.  This  problem, however,  needs further 
consideration, especially  in the light of the conclusions of Birkeland (1975) 
that, on similar rock types, rates of weathering over time in the alpine belt of 
the  Rocky  Mountains of the southwest of North  America  are  about  one order 
of magnitude  greater than those characteristic of BafEn Island. An independent 
check could be made by the  examination of differing  degrees of landscape 
dissection (D.R.  Grant, Geological  Survey of Canada, personal communication, 
1978). A related problem is the paucity of detailed stratigraphic and palaeo- 
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geographic information concerning early Wisconsin time, in view  of the assump- 
tion that  the Last Glaciation occurred during  the period 125,100-  8,000  BP 
(Miller et al. 1977).  It may  be that  the zone of intermediate weathering - 
Zone I1 of Boyer and  Pheasant, Koroksoak Zone of Ives, Zone B of Grant - 
relates to  an early Wisconsin stade, at least in the more southerly areas  under 
consideration. Despite these qualifications, which should provide a motive for 
future research, the  map (Fig. 2) is  based upon the assumption that  the lowest 
of the  three main weathering zones was formed contemporaneously along the 
entire  eastern seaboard, and relates to  the Maximum of the  Last  Glaciation - 
even though the “maximum”  may  have occurred during earlier stades in the north 
and later stades in the south. The term “contemporaneouslyy’, therefore, is used 
in the broad sense of “Last Glaciation”. 

ICE CONDITIONS DURING  THE LAST GLACIATION: HYPOTHESES 

The intriguing question of why the early view of Bell, Daly and Coleman 
was so easily and suddenly overthrown during  the early nineteen-forties remains 
to be answered. It is of more than passing interest, because it is a classic  ex- 
ample of the way in which  knowledge in  the  natural sciences, or knowledge in 
general, proceeds from one “truth”  to  another  “truth”  and, sometimes, back 
again. It is the  more perplexing because similar field evidence from  the  Yukon, 
Alaska, the Rocky  Mountains  and  Antarctica,  often  the subject of similar 
methods, has been uncontroversially accepted over many decades by all re- 
searchers. Thus Bostock (1952) delineates glacial limits in the Yukon on the 
basis of weathering zones. Flint accepts comparable field evidence from 
southern  Alberta,  stating  that “measurements at former  nunataks give values 
(of ice thickness) between 300 and 700 m (depending on distance from  the 
ice  margin)  for  Late Wisconsin ice and up  to  900 m  for  Early Wisconsin ice” 
(Flint  1971 pp. 484-5).  More recently, Denton  (1974)  has applied similar 
methods in  Antarctica  and  the Yukon-Alaska border  as a means of identifying 
the  outer limits of different glacial stages. 

Nevertheless, the “maximum Wisconsin viewpoint” has prevailed in  regard 
to  the  eastern sector of the  Laurentide  Ice Sheet, despite its dependence upon 
either unsubstantiated notions concerning the derivation and age of the Shick- 
shock erratics  and the  form of the  Torngat  striations  and  erratics, or else oft- 
repeated assumptions that felsenmeer could have formed  as a result of very 
rapid frost-riving over the time which had elapsed since the maximum of the 
Late Wisconsin Glaciation. The question concerning the rejection of the early 
views  of Bell, Daly and Coleman can be at least partially answered by stating 
that (a) Tanner was a confirmed opponent of the  Nunatak Hypothesis as a 
result of his pre-Labrador experience in Fenno-Scandinavia, as was also Flint; 
(b) the hypothesis which Flint repeatedly advanced was intellectually attractive; 
and (c) Bell, Daly and Coleman were dead, and  therefore unable to defend 
themselves. 

Nevertheless, despite the fact that  a more definitive map of the maximum ice 
limits for the Last Glaciation along the eastern North American seaboard has 

i 
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been  produced  (Fig. 2), the problem of mountain-top evolution and glacial  history 
in the area is by no means  completely  resolved. The warning that is implicit in 
much of the  foregoing  discussion  should  be  heeded, and the possibility of stepping 
backward to another “truth” should  be  resisted. In view of these  considerations, 
some of the  remaining ambiguities will  now  be reconsidered, and  a series of 
working  hypotheses  propounded  for future testing, modification and possible 
replacement. 

Eilif  Dah1 (1955) made  a much  needed, but little heeded, plea for  earth 
scientists to accept strict criteria  for  the identification of glacial erratics, especi- 
ally if the  latter  are thought to  occur in areas identified on separate grounds by 
botanists as plant refugia. These criteria are  as much needed today  as  they 
were more than twenty years ago; they are  therefore now restated. The principal 
plea  is that, since the existence of large anomalous blocks on  mountain tops 
may be  explained in terms of several unrelated processes, a positive  identifica- 
tion of a glacial erratic requires demonstration of petrologic, tectonic and 
geomorphic uniqueness. The different  processes include: weathering-out of 
inclusions, reduction of weathering  remnants of higher geological strata by 
long-term general surface lowering, cold-climate  mass movement which  causes 
displacement from source areas, and  emplacement  and  removal of erratics by 
human action. 

Despite the need to identify these problems of glacial erratics, the applica- 
tion of Dahl’s criteria, if carried to  its logical extreme, could retard progress, 
rather than assist it, especially  with regard to areas of Precambrian rocks that 
lack detailed bedrock maps. It is partly on this account that the term  “perched 
block”  is here proposed for anomalous  boulders that cannot be traced to finite 
source areas and thus shown to be, in the strictest  sense, glacial erratics. It can 
also  be  argued that, under certain circumstances,  perched  blocks can  be regarded 
as  evidence of glaciation. 

Some other principles are worthy of reiteration. Proof that  one  summit  has 
been  covered  by  moving  ice  is not proof that all’ such  summits in the general 
vicinity, and especially in  the wider region, have been subject to  the same occur- 
rence. Nor does absence of positive  evidence of glaciation indicate that a 
summit  has  never been glaciated. In this context, it is  necessary to distinguish 
between “glaciated” and “glacierized”. The  former indicates inundation by 
moving, or actively eroding, ice; the  latter,  that  a  summit has been  covered  by 
thin, inert  or “cold” ice frozen to  the bedrock, either as  a separate ice cara- 
pace, or in conjunction with, and contiguous with, actively eroding ice that 
traverses the  surrounding valleys and fiords. In  the  latter case, ultimate disap- 
pearance of the ice cover, with the temporary exception of crustose lichen size 
and percentage cover, may leave no indication of its  former presence.  Sugden’s 
(1974) hypothesis of “cold-ba~ed~’ ice in areas of selective linear erosion repre- 
sents something  between  these  two characterizations. Then again, the anomalous 
block  itself,  whether  glacially  emplaced or the product of differential  weather- 
ing, has  no age characteristics, presently  recognizable and unequivocal, that 
will relate it  to a particular glacial  stage.  Unweathered, or little-weathered, 
glacial erratics in a rubble of mountain-top  detritus  cannot necessarily  be 



40 THE  LAURENTIDE ICE SHEET 

assigned to  the  Late Wisconsin Glaciation,  and the rubble be assumed to have 
formed since deglaciation (Flint et al. 1942); nor  can  they necessarily be 
explained as being due to  the emplacement by  cold-based Late Wisconsin ice, 
on the assumption that  the underlying, earlier-formed rubble had  been pre- 
served throughout  the period of supposed Late Wisconsin inundation.  Certainly, 
many of the presumed glacial erratics  that the present author has discovered in 
such  circumstances  have  been on ridge crests, actual summits or local emi- 
nences  which are such that  their microclimates  will  have contrasted with those 
of their underlying rubble. Therefore, when the different resistances to erosion 
of the various rock types are also considered, it should  be  obvious that  their 
“fresh”  appearance  can be  very misleading. 

The complexities of the mountain-top conditions of the eastern seaboard can 
be described in terms of a  number of interrelated working hypotheses. These 
are formulated  here to explain differing conditions over time that may  have 
occurred in the  same place, and differing conditions at any  one  time  that may 
have occurred simultaneously  along this considerable length of coastline with 
its  contrasting climates and  topographic settings. Certain localities may  have 
experienced the  entire  range of hypothesized conditions, others only one,  and 
still others an intermediate  number. In this context, Sugden’s  mapping of 
glaciated landscapes is of great value, since it serves to emphasize the existence 
of landforms of glacial erosion and  their relationship to varying temperature 
conditions at  the  bedrock/ice  interface (Sugden 1977).  The individual hypo- 
theses are presented as two series of topographical sections: the first series, with 
emphasis on changes through  time  in  one locality, appear as valley cross-sections 
(Fig. 3) ; the second series, which represents conditions which  possibly occurred 
at the same time along different sections of the coastline, appear as topo- 
graphical sections drawn  perpendicular to  the coast (Fig. 4). Type localities 
are appropriate for the latter set. Taken together, and  with other conditions or 
minor  modifications, these topographical sections allow a wide  range of possibili- 
ties to be portrayed. Careful testing of at least some of these hypotheses in at least a 
few of the critical areas can provide a basis for  important field  work  in  the future. 

Fig. 3 UPPER is a graphic representation of the hypothesis that three weather- 
ing zones exist, and  it  can be interpreted  in two  ways  which are discussed  below 
as hypotheses 1A and 1B. The surface  characteristics proposed in them  are 
based  upon actual field work  carried  out in the  southern  Torngat  Mountains 
west of Saglek Fiord (50°30’N, 63”O(YW) (Ives  1958a, 1958b).  An uppermost 
weathering zone is a characteristic of much of the broad upland summit area 
above 800-1,000  metres, which supports  a  mature,  mountain-top  detritus, 
large numbers of deep weathering pits, many tor-like forms  and  scattered 
glacial erratics.  But, except in the  form of erratics, evidence of glaciation is 
lacking in the  area. It is  named the Komaktorvik  Zone to differentiate it  from 
the  Torngat  Zone (see below) that  has identical weathering characteristics,  but 
which has no known glacial erratics. The intermediate zone, named the 
Koroksoak Zone, displays abundant evidence of glaciation, both depositional 
and erosional, but  without  bounding  moraines;  “incipient”  mountain-top 
detritus  (Ives  1958b p. 27) is widespread, and  the general surface weathering 
-is of a type intermediate between that of the  Komaktorvik  Zone above and  the 
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FIG. 3. UPPER schematic  cross-section of a glacial  trough in the  southern  Torngat 
Mountains,  showing  surface  weathering types and  possible  weathering zones (for legend 
see LOWER  figure). LOWER schematic  cross-section of a glacial trough in the  central 
Torngat  Mountains,  showing  surface  weathering  types  and  possible  weathering  zones. In 
this  instance,  the  highest  summits  are  assumed to be unglaciated. 

Saglek Zone below. This lowest zone (Saglek) is separated  from the Koroksoak 
Zone by extensive stretches of lateral  moraine,  kame  terrace  and glacial-lake 
shoreline that together comprise the Saglek Moraines  (Ives 1976). Surfaces, 
both bedrock and till, in  this  zone  are  “fresh”.  Striations  and polished surfaces 
are much  in evidence on  rocks of fine-grained type, and  large  numbers of 
glacio-fluvial’ and  glacio-lacustrine  features are well preserved. 

According to hypothesis lA, the  contrast in surface  weathering between the 
Komaktorvik  and  Koroksoak zones is the  result of  ‘a gradual  transition  and is 
directly related  to  a change in  basal ice-temperature conditions, from cold-based 
summit  ice to warm-based thicker and  faster-movhg valley  ice.  (see  Sugden 
1974,  1977); and, furthermore,  both zones  were’ ice-covered during  the  Last 
Glaciation (Wisconsin, 125,000-8,000 BP). The. assumption in this’ ‘hypothesis 
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is that the zones relate to an early stade of the Last Glaciation, with the 
Saglek Moraines representing the maximum of the “classical”, or  Late 
Wisconsin, stade. An alternative hypothesis (1B)  is that  the Saglek Moraines 
represent  the  greatest  extent of ice at any  time  during  the  Last  Glaciation, so 
that  the upper  weathering  zones relate to  an earlier glaciation or glaciations. 
This hypothesis is to be preferred, because of the dates  attributed to the lower 
zone and  its  boundary  moraines  on Baffin Island (Lgken  1966; Ives and 
Buckley 1969;  Pheasant  and Andrews 1973; Miller et d .  1977), although the 
correlation is by no means proven, absolute dating of the Saglek Moraines 
being required. Hypothesis 1B also serves to indicate that  the  Komaktorvik/ 
Koroksoak break is distinct and  separates  a pre-Sangamon glaciation (Korok- 
soak)  from  a much earlier  (Komaktorvik) glaciation that overtopped all, or 
most, of the highest summits  southward of the Komaktorvik  Lakes vicinity. A 
third hypothesis (1C) - that all three weathering  zones can be related to 
Late Wisconsin variations  in  temperatures  and dynamics of basal ice (Sugden 
1977) - would  appear invalid because of the presence of the Saglek  Moraines, 
which  must  be  assumed to have  been  formed subaerially. Also, the very distinct 
boundary  between the Koroksoak  and  Komaktorvik zones, at least in the south- 
ern  Torngat Mountains,  would require an  unlikely  prolonged stability of the 
subglacial change  from  cold-based to warm-based ice (see  also Grant  1977a). 

In Fig. 3 LOWER  there  are depicted the same  three weathering  zones as 
appear in Fig. 3 UPPER, but  there is a subdivision of the upper  zone  which is 
based on an assumed total absence of glacial erratics  in  the higher unit (Torngat 
Zone)  and  the presence of erratics  in  the lower unit  (Komaktorvik  Zone). 
Detailed fieldwork  could conceivably lead to these being differentiated on the 
basis of weathering criteria. Fig. 3  LOWER  can be interpreted to  infer  that  the 
Komaktorvik/Koroksoak  transition represents a  change  from cold-based to 
warm-based ice;  or,  alternatively, that  the Komaktorvik-Koroksoak  boundaries 
represent  the limits of different glacial stages. In either case, and with reference 
to hypothesis lB, it is assumed that  the one or more glaciations antedate the 
Last  Glaciation  and that thin, cold-based ice carapaces were present on  summits 
at least during  certain periods of the last several glaciations. The  term “Komak- 
torvik  Zone” is derived from  the  Komaktorvik  Lakes in the  central  Torngat 
Mountains  where glacial erratics were first discovered at altitudes of over 1,200 
metres  (Ives 1957).  The postulation of an unglaciated uppermost (Torngat) 
zone  would  accommodate the observations of  Lprken (1962b) in the northern 
Torngat Mountains  and those of the present author in the Clyde - Inugsuin - 
Sam Ford fiord area of northeastern Baffin Island (Ives 1966,  1974; Ives and 
Buckley 1969), and also account for the absence of erratics from the Tertiary 
basalts near  Cape  Dyer (Clarke and Upton  1971 ; Ives and  Borns 1971 ; Isher- 
wood 1975). 

The various possible interpretations that  can be  drawn  from Fig. 3 serve to 
emphasize the critical significance of the Koroksoak/Komaktorvik  transition. 
In  the Nakvak  Lake  trough, Saglek Fiord,  northern  Labrador,  this  transition 
can be seen as a  sharp  line  (Ives  1976 p. 406) - possibly too  sharp  to  warrant 
interpretation as the  former glacier basal area  where a change  occurred 
from cold-based to warm-based  ice.  However, in all other localities known to 
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the present author,  the transition from  the intermediate to  the  upper  weather- 
ing zone is much less distinct, and frequently cannot be readily interpreted by 
eye in the field but only by interpolation between weathering stations after 
laboratory analysis and  data processing. Thus, while it is an unlikely explana- 
tion, the possibility must be considered that  the Nakvak Lake “upper trimline” 
(Ives 1958a) is an accident of nature  and  not indicative of a general condition. 
The  interpretation of field data in the  Coronation-Maktak fiord area of eastern 
B a f i  Island (67”15’N, 63’30’W) (Sugden  and  Watts 1977) serves to em- 
phasize that caution is required in this respect. 

A  further consideration stems  from the foregoing discussion of weathering 
zone differentiation. So far,  for  the sake of simplicity, it has been  assumed that 
one glaciation can be equated respectively  with each of the  major  weathering 
zones. It may be that  the threefold weathering-zone division  is still not suffi- 
ciently refined for subzones to have been detected, though  they  may actually 
exist in nature. Certainly, the results of recent,  and  much  more detailed, studies 
of  weathering  phenomena on the Cumberland Peninsula area on Bafliin Island 
(Mears 1972; Miller 1973, 1976; Birkeland 1975; Isherwood 1975; Locke 
1,976;  Dyke 1977) have  shown that  the process of subdivision can be carried 
much further; in particular, the lowest weathering  zone itself has been sub- 
divided into  three, indicating correlation with three stades of the  Foxe  (Last) 
Glaciation, and  a fourth - equivalent to  the Neoglaciation - has been  sub- 
stantiated. 

Fig. 4 consists of a  group of six topographic sections, each roughly perpen- 
dicular to  the coastline in different  localities of the study area selected, because 
it is  believed that they  portray glacial conditions that occurred at different 
phases of the Last Glaciation. The sections are intended to show surface 
characteristics, such as  are represented in Fig. 3, that  are indicative of ice 
maxima  during earlier glaciations. Between them the six sections probably 
represent many,  although by no means all, sets of conditions - or glacial 
styles (Grant  1977b)  -that occurred along different lengths of the  seaboard 
at different  glacial maxima  throughout  the Cenozoic Ice Ages. The most 
notable exception is the possibility of very early glaciation on a  topography 
completely different from  that of today. 

Fig. 4A is a cross-section through southeastern Labrador  and  northern 
Newfoundland,  and is classed as  the Belle Isle Type. This is a hypothetical 
composite derived from  the work of Coleman (1926), Brookes (1977) 
and  Grant  (1977a,  1977b).  It portrays a  Last Glaciation Maximum, with 

cap  over  Newfoundland.  An earlier (possibly pre-Sangamon) glaciation is 
depicted as reaching the  Straits of Belle Isle, the ice of Newfoundland  and the 
mainland being contiguous but dynamically independent. At this stage, summits 
of mountains of Newfoundland,  today covered  by mature  mountain-top detritus, 
either  remained  as  nunataks or else were covered  by thin, stagnant and/or 
cold-based  ice. A somewhat similar pattern of glaciation could apply to the 
southern Labrador-Gasp6 area and to other parts of the region  comprising  New 
England  and  the  Atlantic provinces of Canada.  Brookes (1977)  and  Grant 
(1977a,  1977b) consider Zone B in Newfoundland to be pre-Late Wisconsin 

c Laurentide ice not reaching the present-day coastline and an independent ice 
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but post-Sangamon - i.e.,  early  Wisconsin. This implies that felsenmeer has 
developed during the Wisconsin or Last Glaciation. 

Fig. 4B is named  the  Makkovik  Type after  the vicinity of Makkovik briefly 
studied in 1956 and 1957 (Ives 1958b). In this section of the  Labrador coast, 
mountains rise to heights of 500-600 metres, their  summit  areas displaying 
roches moutonnkes, numerous  perched blocks,  till,  grooves, striations and, in 
places, delicate polish. Weathering of the Saglek Zone type extends therefore 
to  the highest mountain tops and indicates total glacial inundation by Lauren- 
tide ice during one  or  more stades of the  Last Glaciation. It may be assumed 
that  the margin of the ice sheet extended well out onto  the  continental shelf. 
The Makkovik  Type of continental glaciation probably covered an  area extend- 
ing from a little northward of Belle Isle to  the vicinity of Nain (56"35'N, 
6 1 OSO'W). 

Fig. 4C depicts the  Nain-Okak  Type, characteristic of the  area extending 
from  Nain  to  the vicinity of Cod Island (southernmost  Kaumajet  Mountains in 
latitude 57O45'N). This section of the  Labrador coast exhibits a much  more 
complex  and rugged  relief than  the more southerly sections; in particular, 
maximum altitudes approach, and occasionally  exceed, 1,000 metres  above 
present sea  level. The composite  pattern of glacial conditions is derived from 
the work of Wheeler (1958), Tomlinson (1958,  1963), Andrews (1963) and 
Johnson (1969). In this area,  weathering of the Koroksoak  Zone type is wide- 
spread on  the higher summits  both  near the coast and  for some 40-50 kilo- 
metres inland, a fact which may be taken to indicate that many  upland areas 
remained ice-free, or else were covered  only  by thin, stagnant  and  dynamically 
independent ice carapaces, during all stades of the  Last Glaciation. The ice- 
sheet margin  extended well out  onto  the continental shelf. At least one earlier 
glaciation (Koroksoak) was much  more severe and  overtopped all the higher 
land, with the possible exception of a tiny nunatak  formed by the uppermost 
100 metres of Mount  Thoresby  (Johnson 1969). In this instance, Mount 
Thoresby constitutes an anomaly to  the Nain-Okak Type. The same is probably 
true also of nearby  Mount  Attanekh  (height 1,053 m). 

Fig. 4D represents the Nachvak Type, named after Nachvak  Fiord in the 
central  Torngat  Mountains,  about midway  between  Saglek Fiord  and  Komak- 

FIG. 4. Six schematic  profiles  drawn  perpendicular to the general trend of the  margin 
of the  Laurentide  Ice  Sheet.  The localities A-A' to F-F' are indicated on Fig. 2 (fold-out). 
The six types  are  named for specific localities ranging from the  Straits of Belle Isle to 
northeastern Baffin Island. 
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torvik Lakes, where the existence of three weathering zones and mountain-top 
glacial erratics was  first demonstrated  (Ives  1957,  1958a, 1958b). This, there- 
fore, is the representative region of the Saglek, Koroksoak and Komaktorvik 
weathering zones and  their associated glaciations. Saglek Zone weathering 
surfaces are limited to glacial troughs  and occasional areas of lower land on 
the  Atlantic side of the Labrador - Nouveau QuBbec watershed. It is doubtful 
whether, in  the  area between  Saglek and Nachvak fiords, ice reached the  outer 
coast in any  quantity  during  the  maximum of any  stade of the  Last Glaciation. 
Local cirque glaciers, valley glaciers and ice caps existed. South of Saglek Fiord, 
the upland gradually loses altitude,  and between Hebron  Fiord (58" 15'N, 
63OOOW) and  the  Kaumajet  Mountains  (southern limit of the Nachvak Type 
area) mainland ice almost certainly extended well out  onto  the  continental 
shelf. Similarly toward the  northern limit of this  area,  and located in the 
vicinity of Kangalaksiorvik Fiord (59"25'N, 64"00'W),  outlet glaciers un- 
doubtedly extended beyond the fiord  mouths &@ken 1962a,  1962b).  The cross- 
section (Fig. 4D) also indicates the occurrence of two earlier glaciations 
(Koroksoak  and  Komaktorvik) ; the  latter overtopped the highest summits, as 
indicated by the identification of numerous erratics (Ives et al. 1976).  It may 
be noted, however, that  the highest mountains in the  Nachvak Type area 
(Cirque  Mountain  and  Mont d'Iberville) , just south of Nachvak Fiord, exceed 
1,600 metres and are appreciably higher than  any  that  have been studied so 
far. It is therefore by no means certain  that evidence of glaciation will  be 
found when these summits are eventually examined closely. 

The double name Inugsuin-Eclipse (Fig. 4E) concerns the northern  Torngat 
Mountains and  the Inugsuin Fiord  area (70°00'N, 68"OO'W)  of northeastern 
Baffin Island, which both exhibit well-developed characteristics of the same 
type of glacial conditions and have also been studied in some detail (Lflken 
1962a,  1962b,  1966; Ives  and  Buckley 1969; Miller et al. 1977). This type is 
comparable to the Nachvak type in that the areas concerned contain three major 
weathering zones. It is, however, distinguished from  the Nachvak Type because 
of the existence of large numbers of higher summits, especially ones closer to 
the coast that lack any indication of glacial erratics. Thus this glaciation type is 
characterized by an uppermost surface  pattern described in  northern  Labrador 
as the  Torngat Weathering Zone. Ice carapaces probably formed on many 
of these high "unglaciated" tops at various times, as is the case today in the 
northeastern Baffin Island subtype. 

The Frobisher Bay - Hudson Strait Type (Fig. 4F) is the final one now 
described, although several others could be  identified in the  area between 
Bylot Island and  northern Ellesmere Island. This sixth type is somewhat 
different from the other five,  because it is to be found in the vicinity of the former 
massive Hudson Strait  outlet glacier, whereas the others are related to more 
or less straight expanses of mainland coast. This also means that  the profile 
shown in Fig. 4F does not  trend down the local main ice-flow lines, but 
obliquely to them. It is, moreover, the least clear-cut of the six  types  (Fig. 4) 
because  of the complexity of former land-water-ice distributions and because of 
the great limitation of available  field data. Nevertheless, representing a working 
hypothesis, the profile  indicates  limited Last Glaciation Maxima ice on the higher 
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parts of Meta Incognita Peninsula (Mercer 1956); dynamically independent ice 
on Hall and southern Cumberland peninsulas; possibly,  floating outlet glaciers 
at the entrances to Hudson Strait, Frobisher Bay and Cumberland Sound; and 
a considerable number of both highland and lowland nunataks. 

CONCLUSIONS 

While the proposed delimitation of the eastern perimeter of the  Laurentide 
Ice Sheet at  the Maximum of the  Last Glaciation would  be very similar to 
one drawn by R.A. Daly or A.P. Coleman fifty years ago, it is based upon 
a much more extensive body of field data  than was available to them,  and 
upon a much fuller appreciation of the relationships amongst actual topo- 
graphy, climate and past climate,  glacial  chronology and weathering processes. 
Fig. 2 also depicts an ice-sheet perimeter somewhat more restricted than  that 
envisaged by Prest (1969,  1970), although it  cannot be compared closely with 
the maps of Bryson et al. (1969) because their concern had been to draw 
isochrones based upon available radiocarbon dates, and these were absent for 
Last Glaciation Maximum conditions. While the new map does not represent 
a major reduction in  actual  area when compared on a  continental scale with 
the “maximum Wisconsin viewpoint” (Fig. 1 ), it does, however, have several 
important implications. First,  the proposed changes in ice thickness along the 
coast, here defined as the  area between the mid-section of the continental shelf 
and  the heads of the fiords, are considerable, varying between about 200 
metres and 2,500 metres according to  the particular  latitude  and distance 
from  the hypothetical “maximum” ice-sheet margin. From  this it follows that, 
at least on a local scale, large areas above present sea level along most of the 
ice-sheet perimeter remained ice-free, or had only local ice caps, cirque glaciers 
and valley glaciers, with intervening ice-free areas. The  map also presupposes 
that significant areas below present sea level, on the continental  shelf, also 
remained ice-free. Thus ample land, with a range of altitudes and ecological 
niches, would have been available for  the survival of plant and  animal life 
throughout the Last Glaciation. Their present, disjunct occurrence could then 
be  assumed to be identical with, or proximate to,  their refuges during  the 
various glacial maxima. Nevertheless, it is emphasized that knowledge of actual 
plant-species distributions in eastern North America, despite the work of 
Fernald (1925) , is minimal compared with that in Scandinavia. Herein lies 
an opportunity for biological research of great potential now that a reason- 
able geologic  basis  is  developing. 

The  map  (Fig. 2) also implies that  current efforts to model global atmo- 
spheric circulation during various phases of the Last Glaciation should be to 
reassess boundary conditions used as computer  input (Williams et d. 1974; 
CLIMAP 1976). In particular,  a recent paper by Hughes et al. (1977) should 
be regarded as largely speculative in this respect, since it has not  taken  into 
account a large amount of readily  available  field data that conflict  with the 
conclusions it reaches. Despite this, Fig. 2 itself represents only a working 
hypothesis which will probably be  modified as a result of detailed fieldwork. 
Also, the present study throws little light on the problem of whether there was 
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a floating  ice  shelf or thick  pack  ice off shore. This problem  is particularly relevant 
both  to the location of possible  ice-free areas and to the determination of ice-sheet 
boundary conditions  as a basis for computer modelling. 

The hypothesis can  be tested in  certain critical areas. Perhaps the most 
important is the eastern entrance  to  Hudson  Strait, including Frobisher Bay, 
Cumberland  Sound  and  Ungava Bay. There,  a  major outlet glacier, deriving 
much of its supply from  the  Hudson Bay area itself, obviously terminated 
somewhere between Cape Chidley, Resolution Island and  Loks  Land  (62”30’N, 
64”40’W)  and  discharged enormous quantities of ice into the Labrador Sea. 
But,  under  the present hypothesis, this giant outlet glacier would  be much less 
extensive and less powerful than would  be the case  with a larger Laurentide 
Ice Sheet. This in turn invites consideration that  the ice sheet itself may not 
have been the simple, monolithic dome  with maximum thickness over Hudson 
Bay,  as presumed under  the  “maximum Wisconsin’’  model. Part of Hudson 
Bay, and especially the  northern  part, may have  remained an ice-topographic 
low during  one  or  more of the Wisconsin Maxima. This tendency would have 
increased progressively after about  13,000 BP. This topic has been  discussed 
from  the point of view  of analysis of glacio-isostatic conditions by Andrews 
and Peltier (1976). They  conclude that  the  Laurentide  Ice Sheet, as  a simple 
dome,  must  have  collapsed  shortly  after 12,000 BP, a problem  originally  discussed 
by Falconer et al. (1965) upon realization that  the Cockburn  Substage did 
indeed  terminate  about 8,000 BP with a catastrophic evacuation of glacier ice 
from  Hudson Bay. The earlier lowering of the ice-sheet surface would have 
served to reduce  the  amount of energy necessary for ablation required to 
account for such  a catastrophic collapse (Andrews  1973;  Hare  1976). In this 
context, the radiocarbon date, 10,450 f 250 BP (laboratory number I-488), on 
shells from near the marine limit  in the vicinity of Sugluk (62”15’N, 75”45’W), 
recorded by  Ives (1963b)  and Matthews (1967), deserves further review. This 
also bears upon  the  timing of ice disappearance from Ungava  Bay,  which  in turn 
would  cause the drainage of the Naskaupi Glacial Lakes (Ives 1960b). 

Other  areas of critical importance include the  Straits of Belle  Isle, the Shick- 
shock  Mountains, Bylot Island, Lancaster  Sound,  Jones  Sound,  Judge  Daly 
Promontory  and  the coastlands of northwestern  Greenland. 

Indications that glacial erratics  do exist on  certain high coastal summits 
well above  the  upper limits of ice of the  Last Glaciation, from  the Shick- 
shocks to  northeastern B a n  Island, and  probably further  north, would  seem 
to imply the occurrence of an early glaciation (or glaciations) of much  greater 
magnitude than  that of the  Last Glaciation, or else  very early, and  probably 
Tertiary,  glaciation(s)  that developed  when the general landscape relations 
were  very  different from those of today. Thus, absolute altitudes may have 
been much smaller ,and possibly  fiord formation  had barely begun. It is also 
necessary to test the hypothesis that through a combination of more refined 
methods  and  more detailed field study the existence will  be  revealed of more 
weathering zones than  the  three  or  four  that have been  described so far .  
Alternatively, as a result of future advances in glacier mechanics,  some of 
the  “zones” that are currently distinguished  may no longer  be supportable. Inevi- 
tably, the most  critical test of the viability of the general weathering-zone  hypothe- 
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sis will  be  the  dating of sediments  directly related to weathering-zone  boundaries. 
(Dating of the Saglek Moraines has a high priority.) Another would  be the 
identification of long stratigraphic sequences with  uninterrupted pollen  depo- 
sition. And, in a broader context, development in understanding of glacio- 
isostatic conditions constitutes a  complementary  approach to  the overall 
problem of the size and  shape of the  Laurentide  Ice Sheet, a topic which is 
beyond the scope of the present discussion. 

Finally, it must be  emphasized again that rigidity of interpretation  can 
become a serious deterrent  to progress. Hypotheses are put forward  to  be 
tested and, if necessary, replaced, not to be defended beyond their usefulness. 
Only a small fraction of the  total available field data  are  currently assembled, 
so that this one view of the  “truth” is seen, at best, through  a glass darkly. 
The  area is  vast and  comparatively little studied. Many of the field areas  are 
known  only from reports of the person  who originally investigated them  and 
have not been checked since. Even  where  some degree of independent  check 
has been  accomplished, usually based upon degree of comparability of different 
areas studied by  different workers, the  map  and general conclusions have 
evolved  largely from the work of a single  “school” or team. Thus the scheme  pro- 
posed here is to be regarded emphatically as a series of interrelated working 
hypotheses. 
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