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Adaptations of Luzula confisa 
to  the  Polar  Semi-Desert  Environment 

P.A. ADDISON’ and L.C. BLISS2 

ABSTRACT. Luutla confusa is  both  morphologically and physiologically  adapted to the polar semidesert environment of the  western  Queen 
Elizabeth Islands. This species combines the more efficient graminoid  photosynthetic  system and a less drought-resistant mechanism  with  some  of  the 
cushion  plant energy-trapping characteristics such as tufted growth form and persistence of  dead leaves, with  consequent thicker boundary layer. In 
this manner, the  plant is able to assimilate carbon throughout the  24-h arctic day. The species utilizes the  most favorable part of the growing season 
by rapid  initiation  of growth via relatively  high  photosynthetic rates, especially at low temperatures. This species is  very  responsive  (net  assimilation 
rates) to  small changes in leaf temperature and  leaf  water  potential. This permits the species to take advantage of small rises in  leaf temperature 
(leaves  normally 5 to  8°C) and to adjust to high VPD and  low  leaf  water  potential during the occasional droùght. 

The slow-growing,  long-living conservative strategy of  this species appears ideally  suited to areas that are limited in their vascular  plant cover 
because of rigorous environments. Within the range  of  habitats available, Lutula confusa predominates in sites of intermediate moisture with abun- 
dant cryptogams. It does not occur in  the polar deserts with their drier surface soils except in  snowflush communities. 
Key words: Lutula confusa, High Arctic, plantlwater relations, net  photosynthesis,  plant  phenology, polar semideserts 

RÉSUMÉ. La Luzula confusa est adapt& de façon  morphologique et physiologique au milieu polaire semidesertique dans l’ouest des îles  Reine- 
Élizabeth.  Cette espke combine un systkme  trks efficace de photosynthkse de gramine et un &anisme & resistance moins klevk & la sicheresse avec 
certaines des caracteristiques tampons retenant I’Cnergie de la  plante  telles que la forme en touffe, la persistance des feuilles mortes et la couche limite 
plus Cpaisse qui en rbsulte. De cette façon, cette plante  peut assimiler le carbone tout  au  long des 24 heures du jour arctique. Pendant la partie la  plus 
favorable de la  saison de croissance, I’espkce croit par initiation rapide grâce & son  taux de photosynthbe relativement blevt, et surtout grâce aux 
basses temp6ratures. Cette esp&ce  r&git de façdn  marquee  (taux  d’assimilation  nette)  aux  changements  minimes  de temp6rature des feuilles et & la 
teneur d’eau  maximale des feuilles, ce qui permet de profiter des hausses  minimes dans la teMrature des feuilles (temperature normale de 5” & 8°C) 
et de s’adapter & un VPD klevC et & la teneur d’eau peu Clevb des feuilles au cours de sicheresses occasionnelles. 

La stratkgie conservatrice de croissance lente et de longue  vie de cette espkce  semble &re parfaitement convenable aux  rbgions  qui comportent une 
vegetation  vasculaire  limit& & cause du milieu rigoreux. Parmi les diffkrents habitats possibles, la Luzula confusa pr6domine dans les sites & humiditd 
moyenne  contenant d’abondants cryptogames. Elle ne croit pas dans les deserts polaires & sols de surface plus secs, sauf dans les communautes de 
taches de neige. 
Mots clCs: Luutla confusa, nord de l’Arctique, relations plantes-eau, photosynthkse nette, phhologie des plantes, semideserts polaires 

Traduit pour le journal par Maurice Guibord. 

INTRODUCTION 

Abiotic rather than  biotic factors are central in controlling 
plant growth and reproduction in the Arctic (Bliss, 1971; Bill- 
ings, 1974). In the  High Arctic, where environmental condi- 
tions are severe (Courtin and Labine, 1977; Addison  and 
Bliss, 1980), there are few  plant life forms adapted to survive 
a 40-50 day growing season where average daily air temper- 
atures at plant  height (1-5 cm) are seldom above 3 to 6 OC. The 
life forms that predominate are cushion, rosette, and  tufted 
graminoid. 

Graminoids other than sedges are dominant components of 
many upland  plant communities in the Western Queen Eliz- 
abeth Islands (Bird, 1975; Bliss  and Svoboda, 1984). Luzula 
confisu and L. nivulis are common in moist habitats. Both are 
widely distributed circumpolar species that are found  on soils 
ranging from clay loam to sands. 

A detailed study of plant growth and  ecophysiology  of 
Luzula confisu was  undertaken because the species is so com- 
mon on these northern islands (Porsild, 1964) and because its 
tufted graminoid growth form is representative of other 
species. The study  was conducted on King Christian Island, 
because  this species predominates there in  many  plant com- 
munities, and  because  an existing camp facilitated the 
research. 

King Christian Island (Ca. 1100 k m 2  in area) has a low 
domal profile with long, low scarps and gentle slopes. Most of 
the  island consists of alternating beds  of sandstones, mud- 
stones, and shales from Isachsen and Christopher Formations 
of Lower Cretaceous age (Balkwill  and Hopkins, 1978). 
Water erosion plays a dominant role in the dendritic drainage 
patterns that characterize the  low relief. Microtopographic 
features in the form of soil  hummocks (10-20 cm in diameter), 
soil polygons, and  soil stripes (50-150 cm across) are com- 
mon, the product of needle ice, desiccation cracks, and soil 
erosion. 

Summer climate’  is characterized by  low average temper- 
ature (2.2-2.9”C), low  total precipitation (50-65 mm), 
moderate average wirid speed (3.3 m.s”), and  high incidence 
of  cloud  and fog (78-87%) (Addison and Bliss, 1980). Al- 
though  mean temperature varies little from year to year, the 
summer season is variable owing to differences in cyclonic ac- 
tivity  and time of snowmelt. Atmospheric humidity  is  high 
whereas radiant  heat  load  and ambient temperatures are low. 
This results in  an energy balance that is dominated by at- 
mospheric rather than by surface conditions, where diffuse 
rather than solar radiation predominates. 

On  King Christian Island, as elsewhere in these northern 
islands, plant cover is generally controlled by substrate condi- 
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tions. The  greatest plant covw occurs in a band 1.5-2.0 km 
wide  and about I km from the coast on  fine-textured  soils  of 
recent marine origin. Inland  valleys also have considerable 
plant cover, part of the polar semidesert landscape, with 
vascular plants providing 10-2096 cover and cryptogams 
40-70% cover (Bliss  and Svoboda, 1984). Elsewhere on  ridges 
and  on the coarse-texture  substrates derived from the Isachsen 
Formation, total  plant cover averages only 1-3%. This is 
representative of the barren polar deserts (Bliss et al., 1984). 

This study  was conducted within a cryptogam-herb plant 
community  dominated by Luzula  confusa, L. nivalis, 
Alopecurus  alpinus, and Papaver  radicatum (Bliss and 
Svoboda, 1984). The  objectives were to determine the mor- 
phological  and physiological adaptations of Luzula conjksa 
that enhance growth and  survival  in  the polar semi-desert en- 
vironments exemplified by King Christian Island. 

METHODS AND MATERIALS 

Plant Characteristics 

Ten plants, approximately 15 cm  in diameter, were col- 
lected to estimate number of leaves produced  per year, 
average age of tillers, plant age, and structure of above-ground 
and  below-ground components. The time required for initia- 
tion  of growth in the spring was determined by measuring the 
average green leaf  length  of 60 plants  and  the average depth  of 
the active layer during snowmelt. 

Five cores of L. confusa (28 cmz X 15 cm deep) were taken 
at the  peak  of  the growing season (July) to determine standing 
crop in  the above-ground live  and  dead  rhizome  and  root com- 
ponents. Cores were divided into  sections  at depths of +2, 0, 
- 1, - 5 ,  - 10, and - 15 cm. Most  divisions were based on 
plant characteristics; +2 cm represented the top of  the  moss 
layer; 0 cm, moss-mineral  soil interface; and - 1 cm, max- 
imum penetration of rhizomes. The divisions  at - 5 ,  - 10, and 
- 15 cm were arbitrary and coincided with  the  positions where 
soil moisture and temperature were measured. No attempt was 
made  to  distinguish  between  live  and  dead roots. 

Water Relations 

Leaf water potential ( t y p )  was determined with chamber 
psychrometers constructed after the  design  of  Mayo (1974). 
The psychrometers were placed  in a water bath to control tem- 
perature and to prevent the establishment of thermal gradients 
in the psychrometer body. Water potential was measured after 
a 2-h  equilibration  time  that  was predetermined experimental- 
ly. Psychrometers were  calibrated  monthly  with KC1 solutions 
of  known  osmotic  potentials.  In  all cases, the tillers used for 
water  potential measurements were  collected from the center 
of the plant. The water potential  of a central tiller was  within 
the  range  given by the 95% confidence limit of  the  mean four 
measurements taken around the perimeter of the clump six 
times throughout a given day. 

Osmotic plus matric potential ( VO.= + ty 7 )  was determined 
with chamber psychrometers after freezing the  tissue  to  break 
the  cell  membranes  and reduce turgor to zero. In  the field, 
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liquid propane (-42 "C) was  used to  freeze the tissue, whereas 
in the laboratory liquid nitrogen (- 196°C) was used. Turgor 
potential ( Iv p) was calculated by subtracting rY + V, from 
YJ P. 

Atmospheric humidity  was  measured  with a hygrothermo- 
graph (10-25 cm), and water loss from entire plants  was deter- 
mined by weighing sod blocks (Addison and  Bliss, 1980). 
Leaves  from  the  sod blocks were harvested and  leaf area was 
determined using a  linear regression of area vs. oven dry 
weight  (leaf area (cmz) = -4.1 + 390 X oven dry weight (g);. 
rz = 0.79). Leaf area  for the regression was determined by the 
Ballotini  glass  bead technique (Thompson and Leyton, 1971). 

All  plants used in laboratory experiments were  collected in 
the  field  at  the  end  of  the growing season, potted  in their native 
soil, and  given a "dormancy" period of more  than two months 
a! -5 "C. The plants were then.grown under a constant diurnal 
pattern of light and'temperature in a  growtt, chamber (Model 
M 15, Environmental Growth Chambers). Air temperature 
ranged  from 0°C (night) to 10°C (day), and  light  from 0.13 
J-cm-*-min" to 1 .OO Jan-2.min-1 (photosynthetic photon 
flux density  of 0 to 540 pmol.m-2~s-1. 

The  resistance  that L. confuu leaves imposed on water flux 
was calculated for periods when the plant  showed signs of 
water  deficit (i.e. ty p < 0.1 MPa) in order to estimate the 
capability of the plant to withstand drought.  The total 
resistance of the water transfer pathway  from  leaf to  air (R,) 
was  calculated  from Equation 1 and  the  resistance  owing  to  the 
laminar  boundary  layer of the leaves and  the  canopy  was 
caiculated  and subtracted from  the total: 

R,= - p -  (1) 273 es  -ea 
PT E 

where P is atmospheric pressure;  T is air temperature (OK); p 

is density of water  vapor ( g . ~ m - ~ ) ;  E is  water loss 
(gan-2.s"); and e, and e, are the vapor pressure of water 
within  the  leaf  and  in  the air respectively. Systematic errors in 
the  calculation  of  the  resistance  to water flux are in the order 
of 1.4 sari" primarily owing  to inaccuracies in both hygro- 
thermograph and  sod  block measurements. 

The sum  of  boundary layer and  canopy  resistances was cal- 
culated by combining  the  heat transfer equation of Raschke 
(1960) and  the  .ratio of the diffusivities of water vapor and  heat 
in air (Slatyer, 1967) into  Equation 2: 

r, = 1*54cp(Tp - Tal (2) 
H 

where  ra  is  the  resistance of the  boundary layer and  canopy  to 
water-vapor transfer  (s-cm-I); c is specific heat of air 
(J.g".OC-l); p is density of air (gan-'); Tg and T, are 
temperature ("C) of  leaf  and air, respectively;  and H is sensi- 
ble  heat flux (Jan-2.s") calculated  from  the energy budget 
(Addison  and  Bliss, 1980). The assumption that  sensible  heat 
flux was equal from  both  leaf surfaces whereas water.loss was 
from  only  the abaxial surface was incorporated into  Equa- 
.tion 2. 

Leaf  resistance  was calculated by subtracting r, from r,. 
Because  of the  method used, the possible relative error in r, is 
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extremely large but since r, was typically small, the errors  are 
not critical to leaf resistance calculations. If the resistance of 
the intercellular spaces, mesophyll, and cuticle were nearly 
constant as they  usually are, it follows that changes in leaf 
resistance were caused by changes in stomatal aperture. 

The response of L. confusa to decreasing water content was 
described in the laboratory at two phenological stages (before 
flowering and during senescence). Plants were well  watered 
and  enclosed in plastic bags for 24 h in order  to maximize both 
V p  and relative water content (RWC). All tillers of a plant 
were assumed to have  the same RWC  and 'v p after this treat- 
ment. Water balance of a plant  was estimated by measuring 
RWC  of four entire, non-flowering tillers. These tillers were 
weighed, floated  on distilled water for 4 h, blotted dry, and re- 
weighed before they were dried at 80°C for 24 h. Other tillers 
from the same plant were detached, weighed, and  allowed to 
lose  known amounts of  water to provide a range in RWC, V p, 

?r + v r ,  and V before being transferred to chamber 
psychrometers. Water potential, its components, and  oven dry 
weight were determined as already described. Relative water 
content was  defined as the percent water present based  upon 
the water content after the tillers had  been  floated  on  water  and 
blotted dry. The average RWC obtained after enclosing the 
plant for 24 h in a plastic bag was >95% in all cases. 

Net CO, Assimilation 

In both  the  field  and  the laboratory net assimilation rate 
(NAR) was used as an  indication  of  plant  metabolism in order 
to evaluate the influence of extrinsic (environmental) and in- 
trinsic (genetic) factors on  plant growth and survival. Net 
assimilation was determined for individual tillers that were 
enclosed in cylindrical cuvettes 5 cm long  and I .5 cm in 
diameter. Two cuvettes were used in an open cuvette-gas 
analysis system  (Sestak et a f . ,  1971) on a time-shared basis. 
Carbon dioxide flux from air to plant  was determined by 
measuring  the difference in CO, concentration between a sam- 
ple  and a reference air stream with a Beckman  Model 865 
Infra-red Gas Analyser (IRGA). Calibration was carried out 
every 8 h with  known CO, concentration in air. At the  end  of 
the  measurement period, enclosed tillers were harvested, dried 
at 80°C for 24 h, and weighed. Conversion to  leaf area was ac- 
complished as described above. 

In the field, the  IRGA system was  housed in a heated  tent 
and  insulated  with  plastic  foam to maintain  optimum operating 
temperatures. The power supply was a 2500 W gas-powered 
generator, and both voltage  and frequency were kept constant 
(1  10 VAC @I 60 Hz) by varying a "dummy"  load of two 250 
W light bulbs. The generator was  kept  downwind of the air in- 
take for the air flow system in all times. 

In the laboratory the plants were grown under conditions 
described under Water  Relations, but for experimental pur- 
poses  they were transferred to a second growth chamber. Air 
for the flow  system  was supplied from the central air condi- 
tioning system  of  the building, and two IO-litre mixing  bottles 
were used to stabilize CO, levels in ambient air. In  both 
laboratory and  field studies it was impossible either to control 
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or to measure atmospheric humidity in the cuvette with  the in- 
strumentation available. 

Photosynthetic Photon flux density (PPFD) was  measured 
with a Lambda quantum sensor and  measurements  of  both 
global  and  total  incoming radiation were  made according to 
methods described by Addison  and  Bliss (1980). 

Leaf  and air temperatures, both  inside and outside 'of the 
cuvette, were measured  with thermocouples (0.13 mm in 
diameter) and were monitored  with a Honeywell Multipoint 
Recorder. Leaf thermocouples were in contact  with  the  abaxial 
leaf surface. Temperatures within  the cuvette were kept  within 
5 "C under  sunny conditions and  within 2 "C on overcast days 
by adjusting the flow rates between 50 and 150 ml-min" 
through the cuvette. 

Soil moisture was  measured gravimetrically every 2 h.  Leaf 
water potential  of L. confusa tillers adjacent to the cuvettes 
was determined hourly as previously described. 

Light  and Tehperarure Response 

Pairs of L. confusa plants, each with one tiller enclosed in a 
cuvette, were given a 2-h period  under  each condition of 
PPFD and temperature. Temperatures were  set  from 0-25°C 
in 5°C intervals. Light from cool  white fluorescent tubes sup- 
plemented by incandescent  bulbs  was  given  at 0, 150, 350, 
550, 900 and 1300 pmol.m-2.s"  PPFD. For the two  highest 
photon  flux densities, growth chamber lights were sup- 
plemented by a lo00 W Tungsten-filament bulb  with water 
jacket. Readings of gas exchange were taken during the  last 
0.5 h of the  2-h  period  and a maximum  of  eight replicates was 
used for every combination of temperature and  photon flux 
density. 

Soil  Drying  Response 

Four plants were grown under a controlled environment for 
20 days (d) and  watered every 3 d. For the  following 15 d, 
they  received  constant temperature conditions (10°C) but  with 
varying  photon  flux  density (0 to 550 pmol.m-'.s"). During 
that  time watering was stopped, but relative humidity in the ' 

chamber was  maintained at about 60%. The net assimilation 
rate (NAR) of one tiller from each  plant  was  measured  daily at 
approximately noon throughout the drying period. The tiller 
was  enclosed in the cuvette only for the 1-h period  required  to 
measure  NAR. The water potential  of  the  plant  was deter- 
mined concurrently with  NAR by harvesting and  measuring 
another tiller from  the same plant. It  was  assumed  that  all 
tillers of one plant  had  the same NAR  and water potential. 

Effect of Phenology 

Net assimilation rates of various non-flowering tillers from a 
single L. confusa plant were measured  continuously for a 24-h 
period  under growth chamber conditions at  selected  times dur- 
ing  the growing period. The times represented four plant 
phenological stages (pre-flowering, anthesis, post-flowering, 
and dieback). 
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TABLE 1. Standing  crop  components of Luzula confusa on 2 1 July 
1974 (mean f 95% confidence  limits).  Area  is  based on the  cover of 
L. confusa in the  cryptogam-herb  community (8%). 

Standing  Crop 
Component (g.m-*) (%) 

Above-ground 
Live 1.0 f 0.8 3 
Dead 15.8 f 9.0 55 

Below-ground 
Rhizomes 5.5 f 3.0 19 
Roots 6.4 f 2.1 22 

Total 28.7 99 

RESULTS AND DISCUSSION 

Growth Form 

The L. confusa plants of the cryptogam-herb community 
were large compared with  most plants on King Christian 
Island. The plants were about 20 cm in diameter and approx- 
imately 4 cm  high.  Moss  (mainly Ditrichumflexicaule) grew 
between  the tillers, forming a mat about 2 cm thick. Only 6% 
of  the above-ground standing crop of L. confusu was  live 
(Table I ) ,  and  hence it was standing dead  material  that gave 
the plants their characteristic appearance. Total below-ground 
(including rhizomes) to above-ground biomass ratio was 
0.29: I ,  similar to  the 0.21: I measured by  Bell and  Bliss 
(1978) on plants nearby. Most roots (73%) were in the top 5 
cm  of the  mineral  soil (Table 2) in spite of a 45 cm deep active 
layer in August. Observations by  Bell  and Bliss (1978) in- 
dicate that rooting of  most species on King Christian Island is 
confined to the  upper  half of the active layer. 

TABLE 2. Vertical  distribution of living  and  dead  roots of Luzula 
confusa on King Christian  Island  (mean f 95% confidence  limits). 
Area  is  based  on  the  cover of L. confusa in the  cryptogam-herb  com- 
munity (8%). 

Depth  Standing  Crop 
(cm) (g.m-*) (X) 

0 -  - I  1.8 f 0.6 28 
- 1  - - 5  3.0 f 1.6  45 
- 5  - -10 1.0 f 0.7 16 

Moss (+ 2-0) 0.4  0.3 7 

-10 - -15 0.3 f 0.3 4 

Total 6.4 f 2.1 1 0 0  

Since both above-ground and  below-ground parts of L. con- 
fisa were concentrated near the  soil surface, the growth form 
appears to be ideally  suited to utilizing  the  warmest microen- 
vironment. Persistence of  dead  material in its  upright  position 
decreased the  influence of wind on heat  and water-vapor flux 
and helped to raise leaf temperature above those  of ambient 
air. Leaf temperatures were normally 1-2°C higher than am- 
bient air temperature and on sunny, windless days were 5°C 
higher. 
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The large amount of standing dead material (94% of above- 
ground standing crop) also appears to aid in winter protection 
of  living  plant parts. Observations during August snowstorms 
showed  that  snow accumulates around the  dead material; this 
would protect the  basal  meristem  and winter-green portions of 
the  leaves  from  both abrasion by wind-borne ice particles and 
temperature extremes. Spring snow depth averages 10-15 cm 
in habitats where L. confusu predominates. In the spring, 
trapped  snow  melts  and provides a supplementary water sup- 
ply to the  plant  via roots in the  moss layer. 

Standing dead  material  remains  intact for a long  period  of 
time (> 20 yr,  as estimated below) because grazing by animals 
is negligible  and  the  upright growth form puts  the  leaves in an 
unfavorable environment for decomposition. S. Visser (Uni- 
versity  of Calgary, pers. comm. 1976) found  that  both  fungal 
biomass  and  number of fungal species colonizing dead L. con- 
fusa leaves  from  this site were extremely low compared with 
fungal populations on leaves in more temperate regions. 
Winter-green leaf bases characterize this species as well as 
most other species on this  island  and elsewhere in the  High 
Arctic  (Bell  and  Bliss, 1977). 

Age 
Individual tillers produced 14.5 f 1.3 (mean f 95% con- 

fidence limits) leaves during their lives. Each tiller had four 
leaves  present during the growing season, two  produced each 
year; leaves  live for two years. This estimate is identical to 
that  of  Bell  and  Bliss (1978) on King Christian Island  and  that 
of Sdrenson (1941) on Greenland. With  two  leaves  produced 
yearly, the average life  span of a tiller is 7 yr, similar to  age 
estimates for L. confusa tillers on Greenland (Sdrenson, 
1941). 

Plant  age  was estimated by multiplying  the  number  of tillers 
along  the  longest rhizome branch by the  replacement time. 
Since two tillers were alive at  all  times on each  rhizome  branch 
and since the  life expectancy of a tiller was = 7  yr, replace- 
ment  time  was 3.5 yr. The average number  of tillers in a row 
was 32.2 f 5.6, and therefore plants had  an estimated age of 
90 - 130 yr. Since it was  not possible to trace the  rhizome to 
the  very first tiller produced, these age estimates are minimum 
values. 

Reproduction 

Sexual reproduction appeared to be ineffectual, and in fact, 
no viable  seed was produced during three years of  study  (Bell 
and Bliss, 1980a). Reproduction was  asexual through tillering 
from  underground rhizomes. Each tiller died after flowering, 
although not  all tillers flowered. Flowering appeared to stim- 
ulate  rhizome branching, possibly through the loss of  apical 
dominance as a result  of  the  shift  from  leaf to floral meristem. 
Since no viable seed  was found, even flowering appeared to  be 
more  important for asexual  than for sexual reproduction. It is 
hypothesized  that  two exceptionally warm  and  long summer 
seasons are required for the  production  of  viable seed: the first 
to  initiate floral primorida, and  the  second  to permit seed 
maturation. Since seedling establishment of  nearly  all vascular 
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species is infrequent in the High Arctic (Bell  and Bliss, 1980a; 
Sohlberg and  Bliss, 1984), it appears that an exceptionally 
warm year must  be  followed by a warm  moist year to permit 
seedling establishment. The higher-than-normal temperatures 
are needed to promote seed germination and higher-than- 
normal surface soil moisture is essential for seedling establish- 
ment  (Bell  and  Bliss, 1980a). Judging from  the  even age of  the 
L. confusa within  the cryptogam-herb community studied, this 
sequence is very rare and may have a return interval of about 
1 0 0  yr. Seedling survival, however, is enhanced by a moss 
substrate since it provides a higher and more consistent 
moisture supply, higher surface temperature and  reduced  wind 
velocity (Addison and Bliss, 1980; Sohlberg and Bliss, 1984), 
and less resistance to root penetration than does mineral soil 
(Bell  and Bliss, 1978). 

Growth 

Measurements of active layer depth and green leaf  length in 
spring indicated  that  leaf expansion commenced  when the ac- 
tive layer was < 6  cm, and this amount soil  thaw occurred in 
e2 d. This compares favorably with observations of arctic 
graminoids at Barrow, Alaska (Tieszen, 1972), at the southern 
edge of the High Arctic. 

L. confusa has a periodic growth pattern (Sdrenson, 1941), 
and  on  King Christian Island, leaves started to senesce 45-50 d 
after the  initiation of growth. Root growth also dropped to 
almost zero 49 d after snowmelt ( B e l l  and Bliss, 1978). A 
similar growing period (55 d) was observed under controlled 
environmental conditions where photoperiod, photon flux den- 
sity, diurnal temperature oscillation, and  soil moisture re- 
mained constant. The periodicity was apparently unchanged 
by flowering, and  the  mechanism controlling it  is unknown. It 
is thought that autonomous interruptions in growth may only 
be of short duration under favorable conditions (Srenson, 
1 9 4 1 ) .  In exceptionally long, warm seasons the plant may still 
be able to produce viable seed, but this aspect was not exam- 
ined  within controlled environment conditions. 

July 
0 10 20 

VI 

V" + w  

FIG. I .  Leaf water  potential (VI) and OQmOtio plus mrtric potential (Vy* + 
Iy T )  of LwulO cm&.sa during the summer of 1974. 

Water Relations 

Leaf water potential (Fig. I )  was low (< - I .O MPa) in 
early July 1974 but increased over a IO-d period to about -0.5 
MPa where it remained for most  of  the growing season. This 
trend  did not appear to result from the  soil moisture regime, 
since  soil water potential  of  the top 5 cm  was above field 
capacity (-0.03 MPa) for the entire summer season (Fig. 2). 
The low spring values (Fig. 1 )  appeared to result  from low soil 
temperatures ( 1  -2 "C) that  reduced  root  water uptake, rather 
than from dry air that  increased water flux from leaves. The 
seasonal pattern of  leaf osmotic plus matric potential (Fig. I )  
followed  that  of ly p ,  and turgor potential  remained fairly con- 
stant at n0.6 MPa. 

10 

Juno I July Augu.1 

FIG. 2. Soil moisture (0-5 cm) in % of oven dry weight (ODW) of the 
cryptogam-herb  community  during  the  summers of 1974 and 1975. Values are 
averages of four measurements  and  dashed l ine represents  the  water  content at 
-0.03 MPa. 

Vapor pressure deficit varied little throughout the season 
and  the  mean  value ( <0.05 kPa) was less than  is considered 
typical of either arctic (0.6-0.8 kPa; Lewis and Callaghan, 
1974) or alpine (0.8-1.0 kPa; B e l l  and  Bliss, 198Ob) en- 
vironments. 

In the laboratory, when plants were watered every 3 d. Y p  
was = -0.4 MPa for most of the growing period (Fig. 3). The 
lower Y p and ( ly + Y 7 )  values  recorded in spring in the 
field (Fig. 1) did not occur in the laboratory. This indicates 
that  field environmental conditions are responsible for the de- 
pressed field values, rather than characteristics of the plants 
during elongation. 
L. con&u exhibited severe water deficit (i.e. Yyp < O .  I 

MPa) on only one occasion (27 July 1974) during the three 

FIG. 3. Leaf wotcr potential (Iy I) and osmotic plus matric  potential ( Iy + 
Iy T )  of Lctvla coqfksa during a growing period in the laboratory. Values arc 
averages of four d i n g s  taken knmen 0 and l o o 0  h. 
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years of  field study. lncoming radiation on this day  reach ed  reduction in I 
the  highest  value recorded (4181 J.cm-*.rnin”) and  the five 
previous days had  had no precipitation or fog. In the early 
morning (0400 h) transpiration started to increase (Fig. 4c) but 
at 0800 h there was a rate reduction. This decrease in transpir- 
ation  could not be related  to  leaf temperature, air humidity, or 
the  radiant  heat load. It appears that transpiration exceeded 
water uptake by the roots, resulting in increased leaf water 
deficit and  stomatal closure. Water and turgor potentials (Figs. 
4a and 4b, respectively,) were both  low  at  the same time. Leaf 
resistance (Fig.  4d) increased substantially, presumably owing 
to lower W and IV D .  The drop in turgor, W p, and transpira- 
tion appears to  stem from the  inability  of the plant  to draw 
water  from  cold soils. Soil temperature ( - 5  cm) at 0800 hr 1.6 
was  only 4°C but  had increased to 10°C by 1200 h. A second 

eaf water potential, turgor, and transpiration, ac- 
companied by an increase in leaf resistance, occurred at 1200 
h.  Vapor pressure gradient from leaf to atmosphere increased 
from 0.30 kPa at 0800 h to 0.64 kPa  at  1200  h. The second 
reduction in transpiration appears to be the  “midday depres- 
sion” of transpiration reported by Gates (1965) and others for 
mesophytic plants. The final reduction in transpiration at 2000 
h can be explained by the reduction in leaf temperature to that 
of  the ambient air, resulting in a reduction in vapor pressure 
deficit. 

On most days during the summers of 1973 - 1975, water and 
turgor potentials were consistent and  high (-0.35 and 0.8 
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MPa, respectively) and transpiration was  low.  On  such days, 
leaf resistance was  normally less than 2 s-cm-' throughout the 
day.  The minimum  leaf resistance of L. confusa, (0.5-1.0 
s.cm"), calculated from  the  energy  budget  components,  was 
comparable  with  that  of plants growing in moist  environments 
in both alpine (0.6-1.4 s.cm-'; Ehleringer  and Miller, 1975) 
and arctic (1-3 s.cm-l;  stoner and Miller, 1975)  environ- 
ments. 

Laboratory studies on the response  of L. confusa to  water 
deficit showed a shift with  phenological stage (Fig. 5). There 
was a significantly greater reduction in turgor with  decreasing 
relative water  content in plants at the end  of  the  growing 
season (Fig.  5b) than  those at the beginning (Fig.  5a) (F, test 
of regression lines, p<0.05). This differential in cell wall 
elasticity appears  to  be a mechanism  that  allows the plant  to 
survive  late-season  droughts  and  maintain sufficient water in 
its tissue to  allow translocation of materials out  of  the  leaf as it 
begins  senescence.  There  was also a significantly greater 
reduction in v a + ly with  decreasing relative water  content 
at the end vs. the  beginning of  the  growing season. This  is 
perhaps a response tc? senescence (greater solute concentra- 
tion) and  an increase in tissue cold hardiness. 

Net CO, Assimilation 

Temperature  appeared  to  have the greatest effect of  any en- 
vironmental factor on  net assimilation rate (NAR). Using 60  h 
of field NAR measurements at the height  of the growing 
season  (23-26  July 1975), a significant amount  of the variabili- 
ty  in NAR was  accounted for by the regression of NAR on log 
temperature above a threshold  of 3°C (NAR [mg 

Below 3"C, photon flux density accounted for  a significant 
amount of the variability in NAR  (NAR [mg CO,.g-'.h-l] = 
-1.018 + 0.012  PPFD; bm~l .m-~.s" ] ;  p<O.OOl).  Since 
leaf  temperature  was  normally  above  the 3°C threshold, CO, 
uptake  was  more strongly coupled  to  temperature  than to light 
intensity under  field conditions. This  is  contrary to observa- 
tions on other arctic plants in low arctic environments 
(Tieszen, 1973;  Shvetsova  and  Voznessenskii,  1971)  where 
photon flux density and  soil  moisture are more often limiting. 

It  was  not possible to develop a relationship between  field 
moisture  regime  and net CO, assimilation rate. The range of 
soil  and  leaf  water potentials found in the field was  very nar- 
row.  Soil  moisture (0-5 cm) never  dropped  below -0.03 MPa 
and  leaf  water  potential  was rarely below -0.5 MPa  during 
the  season (Figs. 1 and 2). 

With the onset of  dieback,  net assimilation rates dropped. 
Typical  midday net photosynthetic rates ranged  from  10-15 
mg CO,.g".h"  during  much  of the growirv period, but 
dropped to 2-5 mg CO,.g".h"  with the onset  senescence. 
Dark respiration was also lower  (Table 3). I reduction of 
both  net  photosynthesis  and dark respiration '.: pears to repre- 
sent a general  slowing  of  plant  metabolism  with  senescence. 

Light  and  Temperature 

CO,*g-'*h"] = -9.104 + 21.015 [log,, "C] ;  p<O.OOl). 

There was a significant interaction (p< .OO1) between the 

127 

TABLE 3. Net  assimilation  rate (NAR) of Luzula confusu under  en- 
vironmental  conditions  before (28 July) and  after (4 August)  the  onset 
of  senescence. All values  are  averages  of  three  samples. 

Leaf 
Photon Flux Temperature  NAR 

Date (pmol.m-2.s-') ( "C)  (mg CO,.g- 1.h- I) 

28 July 274 3.7  4.4 
0 3.4  -2.3a 

4  August 335 3.5  1.2 
0 2.8 - 1.3 

'Negative  values  indicate  respiration in the  dark. 

responses of NAR to light and  temperature  within controlled 
enirironments. Light  compensation  of L. confusa was  higher  at 
high  temperatures,  and the broad  thermal  optimum  was 
elevated at  high  photosynthetic  photon  flux densities (Fig. 6) .  
The shift in thermal  optimum  appears to be  an adaptation of 
the plant to maintain positive net assimilation in an  environ- 
ment  where  leaf  temperatures are tightly linked  to radiation 
load. Similar  observations  were  made by Hartgerink  and 
Mayo  (1976) for Dryas integrifolia from  Devon Island, 
N.W.T. In spite of the influence of  photon flux density on 
temperature  optimum, there was  general  agreement  with other 
arctic plants (Tieszen, 1973;  Tieszen  and  Wieland,  1975, 
Hartgerink  and  Mayo, 1976). Since the temperature  optimum 
( 5 2 5 ° C )  was  well  above  field  leaf  temperatures (5-8"C), 
NAR was strongly dependent  on  leaf  temperature as shown 
above. 

FIG. 6. Net  photosynthesis of Luzula confusa vs. photon flux density  and 
temperature  under  laboratory conditions. All  values  are  means of 9-10 tillers 
from eight different plants. 

The maximum NAR of 19-20 mg C02.dm-*.h" was similar 
to that  of other  arctic graminoids (10-20 mg C02.dm-*.h-'; 
Tieszen,  1973) as was dark respiration (Table 4; Tieszen, 
1973). The respiration rate, however,  was  lower  than  that  of 
several other arctic and alpine shrubs  and  herbs  such as 
Chrysothamnus isidiforus (Mooney et al., 1964), Dryas in- 
tegrifolia (Hartgerink  and  Mayo, 1976), and lklictrum 
alpinurn (Mooney  and  Johnson, 1965). 
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TABLE 4. Dark respiration and maximum net  photosynthesis of 
Luurlu confisu under  laboratory  conditions  (mean and 95% con- 
fidence  limits) 

Maximum 
Temperature  Dark  Respiration  Net Photosynthesis 

( "C) (mg CO,.g-l.h-l) (mg CO,.g-l.h-l) 

0 1.0 f 0.8 5.4 f 2.0 
5 1.4 f 0.8 9.1 f 3.4 
IO 2.0 0.8 14.7 f 0.7 
15 3.0 f 0.9 18.0 f 2.1 
20 3.0 f 1.4 19.9 f 1.9 
25 3.9 f 2.1 19.3 f 1.8 

Soil Water 

Water  balance  did  not appear to  be a significant controlling 
factor for the  metabolism of L. confirsa on  King Christian 
Island during the  study period. In  the laboratory, however, the 
response  of NAR to v p (Fig.  7) corresponded to that of alpine 
plants  (Johnson et al . ,  1974)  and appeared to increase linearly 
with  increasing  water  potential (NAR[mg COz.g".h"] = 
29.85 + 0.036  [kPa]; p <  . 001 ) .  Net  assimilation  rate 
decreased as II.' e decreased, and  was  less  than 25%  of max- 
imum at -0.7  MPa. This reduction  was similar to  that of 
Calamagrostis breweri (Klikoff, 1965)  but  much greater than 
for Carex exerra (Klikoff, 1965); Dryas integrifolia (Hart- 
gerink and  Mayo, 1976); and Kobresia myosuroides, Geum 
rossii, and Deschampsia caespitosa (Johnson et al.,  1974). 
Most  of  those species, however, are native  to  more  xeric en- 
vironments than is L. confusa. 

flowering (Fig.  8) were  likely  the  result of higher  respiration 
rates during growth (Bliss, 1966;  Tieszen  and  Wieland,  1975). 
Reduced NAR after flowering appeared  to  reprdsent a general 
slowing of  plant  metabolism  that  was also seen in the field. 
The slowing  of  both  rates  with  the  onset of dormancy  has  been 
shown in Dryas  integrifilia (Hartgerink and Mayo, ,1976). 
The leaves of L. confusa mature  rapidly  and  show  positive  net 
carbon assimilation early in the  season (Fig. 8). The impor- 
tance of  rapid  growth  and  maturation  of  graminoid  leaves  has 
been  emphasized by the  simulation studies of Miller  .and 
Tieszen (1972) at Barrow, Alaska. 
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FIG. 8. Net  assimilation  rate of Luzulu confusa nt four phenological stages in 
laboratory; (a) pre-flowering, (b) anthesis, (c) post-flowering, and (d) die- 

- 1  . .n  
0 back. Light and temperature-conditions  during  measurement  and  growth  are 

. .  -1." 

;1 
also given. 

I .  Simulation  Studies 
-lSJ 

FIG. 7 .  Linear regression of net assimilation rate of Luzulq confisu vs. leaf 
water  potential  under  laboratory conditions. 

Phenology 

Phenological stage was  shown  to  have a great impact  on 
NAR. Maximum NAR ranged  from  16 mg COz.g".h-l  (540 
pmol-m-2-s" PPFD @ l 0 T )  at anthesis to 5 mg C02.g".h-' 
during senescence (Fig. 8). The trend in NAR was to increase 
to a maximum  at anthesis and gradually decrease as the  plant 
approached dormancy. The lower values of NAR before 

An empirical model  which  used NAR regressed  against  tem- 
perature above 3 "C  and NAR regressed  against  photosynthetic 
photon flux density (PPFD) below 3 "C  was  tested  using NAR, 
leaf temperature and PPFD measurements from a day with 
moderately  high  incoming  radiation (28 July 1975).  The data 
from  this  day  were not used in the  regression analyses. The 
agreement  between  predicted  and  measured  values (Fig.  9) 
was close, and the,prediction of daily average NAR was within 
1 mg C02.g".h-l of the  measured  daily average (6.9 mg 
COz.g-l.h"). Under  cloudy conditions ( I  August 1975), the 
difference in daily NAR between  predicted  and  measured  daily 
rates  was also low (1.3 vs. 0.9 mg CO,.g".h"). 
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FIG. IO. Comparison of predicted vs. measured values of net assimilation rate 
under  laboratory conditions. 
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FIG. Y. Net assimilation rate of Luzula confusa and  environmental conditions 
during 28 July 1975. 

A second empirical model  was developed from laboratory- 
derived responses of NAR to leaf temperature, PPFD, and  leaf 
water potential. The model predicted values of NAR that  fell 
between laboratory measurements for before and after flower- 
ing phenological stages (Fig. IO). Much  of the difference be- 
tween  predicted  and  measured  values can be accounted for by 
variability  among  individual plants and by the  fact  that 
phenology  was not taken  into consideration when responses of 
NAR to PPFD, temperature, and water were determined. The 
model therefore appeared to  be capable of estimating NAR of 
an "average" L. conjksu plant in the laboratory. 

In the field, the  model  based  on laboratory responses was 
not as effective as it was in the laboratory, and  the difference 
between  measured  and predicted NAR was substantial (Fig. 
1 1) .  The model overestimated NAR at low PPFD and temper- 
ature and  underestimated NAR at high PPFD and temperature. 
The reason for discrepancies between predicted and  measured 
values is  not known, but it is thought  that the laboratory plants 

may have acclimated to the lower photosynthetic photon flux 
densities under  which  they were grown in the environmental 
growth chambers. This might account for the higher NAR at 
low PPFD and  the lower NAR at higher PPFD  as compared 
with  field plants. The ability of arctic and alpine plants to ac- 
climatize to growing conditions is  well  known (Billings et a/ . ,  
1971). The lower-than-predicted NAR may also be a result of 
low soil temperatures (Bliss, 1966). The empirical nature of 
the  model  makes it virtually impossible to use it except under 
the narrow range of  plant  and environmental conditions under 
which it was derived. This is illustrated by the poor predictive 
capabilities of the laboratory model under field conditions. 

J u l y  2 8  

FIG. I I .  Comparison of net assimilation rate  predicted  using  laboratory  model 
and field conditions, and  that measured  under field conditions. 

The model of NAR, based  on single factor analysis and 
derived from field data, appeared to be  much  more accurate 
(cf. Fig. 9) and  was  used to predict  the photosynthetic 
capability of L. conjksu in the King Christian Island environ- 
ment. Although it was  not possible to calculate production of 
L. conjksu, because live standing crop was  not  measured 
throughout the season, Figure 12 shows that  the  potential for 
net photosynthesis was  much higher in spring and early sum- 
mer  than in late summer. This illustrates the importance of im- 
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mediate  initiation of growth in spring that  is characteristic of 
L. confusu. Growth was  initated  within  two days of snowmelt, 
and since time of  melt  was  usually in late June or early July, L. 
confusu took advantage of the  best available conditions for net 
photosynthesis. Rapid production of green material  was  made 
possible by preformed buds  and  partially extended green 
leaves  that  persisted over winter. The utilization  of  the  moss 
layer as  a rooting medium (6.6% of L. confusa root standing 
crop, Table 2) also appears to be  necessary for rapid  initiation 
of growth in spring, since water needed for elongation would 

available from frozen mineral soil. 

I 
July  August 

FIG. 12.  Potential  net  photosynthetic  rate (field model) based on actual field 
conditions during  summer 1973. 

P.A. ADDISON and L.C. BLISS 

ECOLOGICAL  IMPLICATIONS 

Low summer temperature appears to be the  dominant en- 
vironmental factor responsible for the low growth rate of 
plants in arctic environments (Tieszen, 1972; Billings, 1974). 
In spite of the  tufted growth form  of L. confusu, which tends to 
ameliorate the  thermal regime, temperature still appeared to be 
the  most  influential factor on plant growth. Leaf temperature 
was generally 1-2 "C above ambient air temperature during the 
1973 growing season on  King Christian Island  (Addison  and 
Bliss, 1980). Although  this difference was  small  when com- 
pared to plants at other high arctic sites (Warren Wilson, 
1957; Addison, 1977), it appeared to have a substantial  in- 
fluence on  net photosynthesis. The field  model  of  net  photo- 
synthesis estimated a  250% increase in NAR with a 1 "C rise in 
temperature at 3°C (1.0 vs. 3.5 mg CO,.g"-h"). In general, 
both  photosynthesis  and dark respiration operated at low tem- 
peratures, and  positive  net photosynthesis was observed at  leaf 
temperatures of -2 "C to - 3  "C, both in the  field  and in the 
laboratory. Both above- and below-ground temperatures are 
important in plant functioning, but growth and development of 
arctic and alpine plants are affected more by soil  than by air 
temperatures (Bliss, 1966; Dennis and Johnson, 1970). Over 
80% of L. confusu roots were in the surface 5 cm of soil, and 
this  morphological adaptation to utilize  the  warmest  soil en- 
vironment is probably extremely important for the success of 
the species. 

Water did  not appear to be  limiting for the survival of L. 
confusu on  King Christian Island during the summers of 
1973-1975.  The  high  water  potential in  the  soil 
(ly soil  > -0.03  MPa) and  high  atmosphere  humidity 
(VPD ~ 0 . 0 5  kPa) permitted a shallow  soil-to-leaf  water 
potential gradient to be adequate to supply  the  plant  with 

TABLE 5. Comparison of characteristics of high arctic  plant  species 

Dryas Carex Luzula 
Characteristic integrifolia stans confusa 

Growth  form  Cushion  Upright  Graminoid  Tufted  Graminoid 
Plant age (years) 20 - 120 5 - 7h 90 - 130 
Root-to-shoot ratio 0.4 - 0.6 9 -  13 0 .3  
Leaves produced  annually  2 2 - 3  2 
Leaves function (year) 2 I +  2 
Leaf  area  index  (plant basis) I .o 2.4 1.4 
Net  photosynthesis (average) (mg COz.g- I.h- I )  2 - 3  I 1  - 15 IO - 15 
Shoot dark respiration (average, mg CO,.g-I.h-l) 1.5 I . 6  I .4 
Leaf  water  potential (average, MPa) -3.2 - 1.4 -0.5 
Leaf  resistance  (sunny day) (s.cm- I )  (calculated) 20 16 3 
Drought  resistance  High LOW LOW 

Energy regime (96 of net  radiation) 
Latent  heat  flux 15 52 28 
Sensible heat  flux 83 39  63 
Soil heat flux 2 9 9 

Sunny 15-20 5-10 5-8 
Leaf  temperatures above ambient ("C) 

Cloudy 0-5 0-2 0-2 

aFrom  Addison (1977). Mayo et al. (1977), Muc (1977) and Svoboda (1977) summarized  by Bliss (1977). 
blndividual shoot. 
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water. The average U, p of L. confusu was greater than -0.5 
MPa and turgor was usually greater than 0.6 MPa. On the rare 
occasions when turgor was low ( e  0.1 MPa), transpiration 
rates were greatly reduced, owing to the increase in leaf 
resistance from the normal 1-2 s.cm". The laboratory ex- 
periments showed that net assimilation dropped dramatically 
(25% of maximum) when U, p decreased to only -0.7 MPa. In 
the unusually cold and dry summer of 1979, soil water poten- 
tial (2-5 cm depth) dropped to - 1.7 MPa in mid-July and to 
c -7.0 MPa after 30 July (Grulke, 1983). Should two or 
more warm, dry summers occur consecutively, large areas of 
Luzufu confusu and probably L.  nivufis might be severely 
affected. 

L. confusu appeared to be better able to resist water deficit at 
the end of the growing season than at the beginning, owing to 
the lower  elasticity of the cell walls that resulted in a more sen- 
sitive control of water flux. However, the plant did not 
demonstrate a capability to withstand severe water deficit as 
compared with more xeric species from the same experiment 
(Grulke,  1983). This helps to explain why Luzufu  confusu and 
L. nivufis are confined to more mesic habitats on this and other 
northwestern islands (Bliss and Svoboda, 1984). 

Several other characteristics of L. confusu appeared to be 
important for survival and growth in  the King Christian Island 
environment (Table 5) .  L. confusu appeared to combine the 
higher photosynthetic capacity of the upright graminoid 
(Curen stuns) with the energy-trapping features and longevity 
of the cushion plant (Dryas integrifofiu). It is felt that the low 
leaf area index and non-drought-resistant nature of L. confusu 
may be the costs that go with both metabolic and physical 
energy efficiency. Many of the plant characteristics such as 
low root-to-shoot ratio, low leaf temperature, high water 
potential, and low leaf resistances (Table 5 )  are adaptive 
responses to this tufted graminoid to the low temperature and 
radiation on King Christian Island (Addison and Bliss, 1980) 
as compared with the upright graminoids in the higher temper- 
ature and radiation on Devon Island (Court in  and Labine, 
1977). 
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