
VOL. 42. NO. 3 (SEPTEMBER 1989) P. 232-247 
ARCTIC 

Baffin  Island  Fjord  Macrobenthos: 
Bottom  Communities  and  Environmental Significance’ 

JAMES P.M. SYVITSKI,2 GEORGE E. FARROW,3 R.J.A. ATKINSON,4 
P.G. MOORE4 and J.T. ANDREWS’ 

(Received 25 February 1985; accepted in revised form 19 January 1989) 

ABSTRACT. Cluster analysis of the  benthos  from ten Baffin Island fjords defines six faunal associations. The macrotidal Sunneshine Fiord 
has a shallow kelp-related Isopod Association. Cambridge Fiord supports a shallow Onuphid Association controlled by  gravel from dropstones. 
A widespread Portlandia Association typified the shallow zones of more recently glaciated fjords where sedimentation rates are high. An 
Ophiuroid-Anemone Association was defined from current-affected submarine  channel environments. A Maldanid Association covered the 
greatest area in all fjords and passed into an Elasipod Association in the deepest water in Cambridge  Fiord. 

Fjord-head faunas are  used to model ecological changes accompanying glacier retreat, from monospecific Portlandia, through mature Portlandia 
Association to Onuphid Association accompanied by diverse filter feeders and herbivores. Chlamys  islandica was found living in Cambridge 
Fiord, which substantially increases its northern limit. 
Key words: macrobenthos, Arctic, cluster analysis, bivalve, Quaternary, sediment 

RÉSUMÉ. L‘analyse d’ensemble du benthos de dix fjords de  la terre de Baffin, laisse apparaître six associations fauniques. Le fjord  macrotidal 
Sunneshine a une association isopode peu profonde reliée aux algues. Le fjord  Cambridge possède une association d’onuphidées contrôlée 
par du gravier venant de blocs isolés. Une association largement répandue de Portlandia caractérisait les zones peu profondes de fjords ayant 
subi une glaciation plus récente, où les taux de sédimentation sont élevés. Une association d’ophiures-anémones s’est manifestée dans un 
environnement de chenaux sous-marins affectés par les courants. L‘association la plus prolifique dans tous les fjords était une association 
de maldanes, qui passait à une association d’élasipodes dans les eaux les plus profondes du fjord Cambridge. 

La faune à l’amont des fjords  sert à construire le modèle des changements écologiques accompagnant le  recul des glaciers, qui vont des 
Portlandia monospécifiques, à l’association des onuphidées accompagnée de plusieurs espèces  filtreuses et herbivores, en passant par l’association 
des Portlandia évoluées. On a trouvé que les Chlamys  islandica étaient présentes dans le fjord Cambridge, ce qui étend considérablement 
leur limite nordique. 
Mots clés: macrobenthos, Arctique, analyse d’ensemble, bivalve, quaternaire, sédiments 

Traduit pour le journal par Nésida Loyer. 

INTRODUCTION 

Fjords  are ideal natural laboratories, with their obvious 
gradients in many key environmental parameters - salinity, 
suspended loads, sedimentation rates, to name but  a few 
(Syvitski and Skei, 1983). For instance, Farrow et al. (1983) 
noted the deleterious effect of sediment loading on the dis- 
tribution of epifauna. 

Farrow et al. (1983) also drew attention to the Palaeozoic 
aspect of the most tolerant epifauna groups, the sponges, 
solitary corals and articulate brachiopods. Similarly, the 
infauna also includes primitive elements, such as priapulid 
worms, that are common to shales of Cambrian age  (Conway- 
Morris, 1977). Bivalves are dominated by protobranchs, which 
originated in the Ordovician and  attain their highest per- 
centage among today’s shallow  water fauna in arctic Canada 
(Nicol, 1972). Furthermore, the present-day arctic fauna  has 
“an astoundingly high  percentage of species (52%) belonging 
to Palaeozoic families” (Nicol, 1970). 

Coupled with this undoubted geological and palaeonto- 
logical relevance comes the  opportunity to evaluate environ- 
mental factors that might  limit the distribution of  organisms. 
Benthic ecologists are still debating the value  of the com- 
munity concept. Many fjord workers  have tended to abandon 
the concepts originally propounded by Petersen (1913,  1915), 
Gislen (1930) and Thorson (1933,1957), for example, in favour 
of gradient  analysis (e.g., Curtis, 1970; Pearson and 

Rosenberg, 1978; Pearson, 1980), which examines the 
association between taxa and  particular environmental 
variables. This latter approach is particularly suited to the 
kind of multidisciplinary study being undertaken by the 
Sedimentology of Arctic Fjords Experiment (SAFE) project 
(Syvitski and Schafer, 1985). The gradient approach is of 
interest not only to ecologists but also to Quaternary eco- 
stratigraphers (e.g., Andrews, 1978; Spjeldnaes, 1978; 
Thomsen and Vorren, 1986a,b). 

There has been little work on Baffin Island marine com- 
munities, though impetus was  given  by the Eastern Arctic 
Marine Environmental Studies (EAMES) program (Sutterlin 
and Snow, 1982). Ellis (1960) has described molluscan 
assemblages  collected.by grab sampling. Andrews (1972) and 
Andrews et al. (1981) have described Quaternary fossil 
localities from raised marine sequences on Baffin Island.  A 
major zoogeographic boundary extends from Cumberland 
Peninsula northeast to near Thule, Greenland (Fig. 1). South 
of the  boundary subarctic molluscs are found (e.g., Mytilus 
edulis), although outliers possibly introduced by whaling 
ships exist at Pond  Inlet,  north Baffin Island. 

Our  purpose is to evaluate the macrobenthos in the SAFE 
fjords in an attempt to understand the ecological changes 
accompanying glacier retreat. Ten Baffin Island fjords were 
studied during  the reconnaissance phase in 1982, with three 
being  selected for more detailed study in 1983 (Fig. 1). Cam- 
bridge, Itirbilung and McBeth were chosen  because of clearly 
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FIG. 1. Location  map of  Baffin fjords  from  which grab samples  and bottom photographs were obtained.  Fjords  in  bold  type are  illustrated or discussed 
in some detail  in  this  paper.  The  combined  total  number of  stations for  each  fjord is indicated. 

marked differences in fjord geometry, glacier cover  in the 
hinterland, suspended  sediment levels and complexity of side- 
entry systems. 

Baffin fjords are generally colder than those of West 
Greenland and Spitsbergen, the  open water season lasting 
from 60 to 30 days.  All fjords visited are microtidal except 
for Sunneshine (Table 1). Sills do not occur in some southern 
fjords,  but they  may be multiple in the  north, where they 
vary from 64 to 439 m in depth. Maximum depths of the 
fjord  floors are commonly in the range 500-700 m. In the 
Baffin fjords, there is little down-fjord variation in nutrients 
or dissolved  oxygen for a given depth; these parameters are 
strongly  vertically stratified and thus water-depth dependent. 
Fjord waters are everywhere  oxygenated (> 3 ml.L"), and 

thus depth-dependent differences in the dissolved  oxygen 
content are thought  not to be a limiting factor. The nutrients 
(silicate, phosphate, nitrate) have a large depth-dependent 
range (Trites et al., 1983; Petrie and Trites, 1984) and may 
be  limiting to some  of the water-depth  dependent macrofauna 
(e.g., Pearson, 1980). 

METHODS 

Field Method 
In 1982,  36 grab sample stations and 36 bottom camera 

stations were occupied in ten fjords between 9 and 24 Sep- 
tember and during Hudson Cruise 82-031 (details  in  Syvitski 
and Blakeney, 1983). In 1983, 45 grab sample stations and 
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TABLE 1. Physical  parameters of fjords  studied 

September Large 
Maximum  Maximum  Minimum No. of Fjord-head tidal  Glacial  ice  in  Glacial  ice  in 

Fjord  length  depth  station  depth  Sill  depth  station  depth stations surface’ range  fjord-head  all  drainage 
(km)  (m)  (m)  (m)  (m)  1982183 TOC S.ppt  (m)  basin (To) basins (To) 

Cambridge 61  708  68 1 439/225 15 
Itirbilung 55 435  416  249 55 

6/30 0.2 29.7 1.8 3 12 

McBeth  93 
4/22 0.9 29.8 1.2 

563  572*  249 
28  32 

67 
5 

Clark 
10117 0.9  29.0  1.2 

720 755* 108/185  192 
4 26 

98  563 
8 1.5 30.7 1.3 

585* 
26 

Inugsuin 121 
40 

47  523 
160 8 -0.4 32.3 1.3 

800* 98 2.7 26.4 1 . 1  20 37 
5 

Tingin 
24 

26  320 
7 

Maktak 658* no sill 90 7 
41 606 no sill 98  76 70 

3.6 24.0 1.4 
497 

53 
Coronation 

47 

48 
5 

479 
3.1 26.4  1.4 

347 N. Pangnirtung no sill  80 
36 

3 
215  215 

? ? 1.4 57 
Sunneshine  64 67 5 -0.8 30.0  4 19  16 

35 

- 180 

‘From  Trites et ai., 1983. 
*Seaward of sill. 

26 bottom camera stations were occupied in three fjords 
between 19 September and  4 October during Hudson Cruise 
83-028  (Asprey and Johnston, 1984). Sample station locations 
for our three principal fjords are shown in Figure 2. 

On neither cruise was  it possible to devote sufficient time 
for a dedicated five-replicate grab benthic sample program, 
as recommended by Holme  and McIntyre (1984). Our 
numerical data must therefore be  viewed with caution,  the 
more so because about 5% of the  total volume had been 
removed from the 37 x 37  cm  Van  Veen grab samples (Schafer 
et a[.,  1984) before the remainder was  sieved through a  2 mm 
screen. The macrobenthos, once removed, were sorted and 
photographed aboard ship. Samples were taken from the 
shallow prodelta by a 24 x 24  cm Ekman grab, operated by 
hand from a launch. The numbers of animals recovered  have 
been  converted to individuals.m-’ in Appendix Table 1. 

Underwater photographs were taken by a stereo Benthos 
camera system  triggered by a compass-bearing weight. The 
area photographed was  1.68 x 1.22 m. Organisms were 
counted from enlarged photographs and numbers divided 
by 2 to obtain individuals.m-*. An average of 17 frames per 
station was obtained. Densities in Appendix Table 2 are mean 
counts per station. Dropstone occurrence was recorded as 
the percentage number of frames in which dropstones were 
visible. 

Laboratory Methods 

Animals were  preserved in  buffered  formalin and identified 
at Millport Marine Biological Station. Grain size analysis 
was carried out  at Bedford Institute of Oceanography.  Gravel 
was separated on  a  standard  2 mm  sieve, mud by a 53 pm 
wet  sieve. The sand fraction was analyzed by a computerized 
settling  tube;  the  mud  fraction by a computerized 
Sedigraph@ 5000D. Organic carbon was determined from 
one of the nine 1-2 g subsamples by a Leco model WR-12 
Carbon  DeterrninatoF equipped with a Leco induction 
furnace (Clattenburg et a[., 1983).  Total nitrogen determi- 
nations were performed by the “Kjeldahl” method.  The 
determination of bacterial  numbers  and biomasses is 
described by Albright and Stroh (1983). 

Statistical Techniques 

The matrix presented in the Appendix was evaluated by 
cluster analysis using Jaccard’s coefficient, which  is  based 

~~ ~~~ ~ ~~~ - 

on presence/absence, and Czekanowski’s coefficient, which 
deals with quantitative data (Boesch, 1977).  All sorting was 
by average cluster linkage. The Jaccard method gives  less 
weight to the poorly fossilizable maldanids than does 
Czekanowski’s. The results given  below are therefore of  rel- 
evance to the interpretation of  raised marine sequences. 

RESULTS 

General Aspects of the Macrobenthos 

The  macrofauna ranges in  size from 2 mm to more than 
20  cm and is dominated by bivalves and polychaetes, the 
former characterizing shallower  water  (Fig.  3A). Epifaunal 
amphipods  and isopods were associated with drifting kelp 
(Fig. 3B,C). Ophiuroids had a wide distribution, as did 
buccinid gastropods, common in deeper water  (Fig.  4C). 

The underwater photographs showed a much greater 
variety of both  infauna  and  epifauna  than the grabs, partic- 
ularly the widespread  pycnogonids and the characteristically 
deep-water elasipod holothurians (Fig.  4B). This is partly 
to be  expected from the contrast in area covered, the Van 
Veen sampling only 15%  of the area seen in a  bottom pho- 
tograph. Dropstones of ice-rafted origin commonly result 
in an increased epifauna, dominated by sponges, ascidians, 
bryozoans and crinoids (Fig.  4A).  Burrowing anemones were 
seen at >80% of the camera stations,  though none was 
recovered in grab samples; neither were pennatulaceans (sea 
pens) - a possible result of the bow  wave generated by the 
grab sampler. Cumaceans were found by both methods, but 
Mesidotea  sabini was photographed only  in Sunneshine Fjord 
(Fig.  3B). 

Tubicolous polychaetes were common. The  mud-  and 
mucus-walled long tubes often seen on underwater pho- 
tographs were sampled in CAI (photograph 82 0446) and 
are confirmed as sabellids. The coarse gravel tubes previously 
attributed to Pectinaria sp. by Farrow (1983:9-8,  9-22) are 
now known to be onuphid polychaetes (Nothria sp.). The 
parchment-like tubes referred to in Appendix Table 2 were 
probably  produced by terebellid polychaetes (possibly 
Thelepus  cincinnatus; Dale et a[., 1989).  All  were empty 
except at IN6 (82  04428),  where a large specimen contained 
a carnivorous phyllodocid polychaete.  Several maldanid 
species are present in the samples, but these are taxonom- 
ically difficult and  no identifications are yet available. Other 
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FIG. 2. Maps of Cambridge, McBeth and Itirbilung fjords showing stations 
from which data were obtained  for  the cluster analyses. 

polychaetes  include a scalibregmid from CA Si113  (18220) and 
possible nephtyds. There are also other tubicolous poly- 
chaetes, probably capitellids, in several samples. Polynoidae 
also occur (e.g.,  CL1); characteristically  they  lose their elytrae 
after transportation in formalin. 

Macrofaunal Associations Defined by Cluster Analysis 

Grab Samples: Both  Jaccard's  and Czekanowski's 
coefficients seem to have produced meaningful clusters of 
the  grab  data (Fig.  5A,B). Both produce a Portlandiu 
Association (mean depth = 55 m), a Maldanid (mud-tube) 
Association  (mean depth = 418 m), an Onuphid (gravel-tube) 
Association (mean depth = 272 m), and a miscellaneous 
assemblage,  which includedhtarte sp. from 19 m along with 
ophiuroids from 520  m. 

The  Onuphid Association was associated with  gravel, 
dropstones invariably being present (Fig.  5C). The poly- 
chaetes are errant and produce distinctive  traces  (Fig. 6).  The 
Onuphid Association occurs over a wide range of sand/clay 
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FIG. 3. Underwater photographs taken with Benthos camera: 3A. Sunneshine 
Fiord, SU7,67 m.  Diverse fauna  on  bottom rich in comminuted shell debris. 
Large and small ophiuroids, asteroid, buccinid gastropod, isopod and small 
fish (gobiid?) in depression. Fused siphons of infaunal bivalve and united 
valves of dead bivalve Serripes  groenlandicus also visible. 3B. Sunneshine 
Fiord, SU7,67 m. ' h o  large Mesidoteasabini, abundant ophiuroids, asteroid 
(in hunched feeding position), large and small fused bivalve siphons, bur- 
rowing anemone, fusiform  gastropod and pycnogonid are visible. The 
sediment is shelly. 3C. Sunneshine Fiord. SU6, 117 m. Drifting kelp debris 
covering ophiuroids carries two isopods. Several onuphid tubes are present 
but are not producing trails (cf. Cambridge  Fiord, Fig. 6).  Compass weight 
has a diameter of 7.5 cm. 
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FIG. 4. Underwater  photographs  taken  with  Benthos  camera: 4A. Itirbilung 
Fiord,  IT2.1, 288 m. Crinoid on dropstone. 4B. Maktak Fiord, MA5, 585 
m. Three  thin-armed  ophiuroids,  abundant  elasipod  holothurians,  mysid 
shrimp,  pycnogonid, burrowing anemone  and  unidentified burrow opening. 
4C. Cambridge  Fiord, CA6,640 m. Four  dead Buccinum sp.  and  one  elasipod 
holothurian on a  bottom  covered  with  faecal  strings  but  otherwise  devoid 
of trails (cf. B):  scattered  shell  debris is evident.  Compass  weight  has  a 
diameter of 7.5 cm. 

values, from 18.6 to 0.4. The Maldanid Association is rarely 
associated with  gravel and tends to be associated with clay, 
except  where side-entry inputs or along-shelf transport have 
introduced sand (nble 2, cluster A'). 

More stations fall into  the Portlandia Association with 
Jaccard than with Czekanowski (10 vs.  6)  (Table 2, cluster 
D'). Neither cluster includes all the stations yielding Port- 
landia. A wide tolerance of  sand:clay ratios is indicated, but 
greatest abundance is  reached in finer-grained lithologies 
(Table  3B). A fuller treatment of gradients within the Port- 
landia Association is  given later in this paper. 

The  final grab sample cluster consists of a miscellany  of 
odd samples that will not cluster elsewhere. This commonly 
happens with this technique, and  it is not  thought to rep- 
resent a natural grouping.  Only  three  real  benthic associations 
are thus revealed by clustering the grab data - i.e., the 
Onuphid, Maldanid and Portlandia associations. 

Bottom  Photographs: Epifaunal  or  semi-infaunal 
ophiuroids were seen far more readily on the photographs 
than in grab samples; in fact, they occurred at all but two 
of the camera stations. Station MC 0.1 at 150 m showed the 
greatest density of ophiuroids (63 m-2) together with other 
indications of a varied fauna (Appendix Table 2); yet the grab 
sample was barren - a reflection more perhaps on the 
representativeness of grab samples than  on patchiness, to 
judge from the photographs. 

Onuphid sites contrast with ophiuroid-anemone sites  (Table 
2). The  former  are consistently associated with dropstone 
material (Fig. X ) ,  occur in slightly deeper water and are 
almost confined to Cambridge Fiord, which has  a far higher 
percentage of dropstones (42.1%) than either McBeth or Itir- 
bilung (8.O%, 3.3%). The ophiuroids and anemones are often 
seen to be living in stronger current areas (Fig. 7) with little 
dropstone material and are associated with submarine 
channel areas that have  been mapped by depth profiling and 
side-scan sonar surveys  (Syvitski et al., 1984b). Cluster 
analysis of the  bottom  photographs enables a deep-water 
Elasipod Association (Fig.  4B) to be further identified - 
essentially part of the Maldanid Association defined from 
grab data (Fig. 5B). 

Gradient Analysis 

Gradients in sediment parameters were more consistent in 
the organic than in the inorganic fraction (Fig.  8). In Cam- 
bridge Fiord, for instance, an  antipathetic relationship 
between the sandklay ratio and the 070 organic carbon is clear 
(Fig. 8A). There is an initial seaward increase in organic 
carbon in the inner basin, reflecting the decrease  in  sedimen- 
tation rate away from the fjord-head river mouth. The pattern 
of organic carbon in the main  basin  decreases  slightly  seaward 
and may  reflect the seaward increase in side-entry glaciers 
with associated higher rates of sedimentation. 

The  pattern is similar in McBeth Fiord (Fig. 8B): 1) an 
inner basin that increases in organic carbon with distance 
away from the main fluvial source; 2) a more or less constant 
organic carbon  content along the main basin sea floor 
(indicative of more constant sedimentation rates from side- 
entry systems  (Syvitski et al., 1984a); and 3) a rapid increase 
in organic carbon in the outer fjordhhelf complex  reflecting 
the contribution of shelf  water productivity. 

In Itirbilung and  Coronation  fjords, organic carbon 
increases rapidly with  increasing distance from the dominant 
fjord-head sediment source (Fig. 8B). The use of organic 
carbon  content as a proxy indicator of sedimentation rates 
is supported by Figure 8C, which  shows the relationship as 

~ 
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FIG. 5.  Results of cluster  analysis of  station faunal  data  using: A. Czekanowski's coefficient applied to grab samples. B. Jaccard's coefficient applied to 
grab samples. C. Czekanowski's coefficient applied to bottom photographs. 

being exponential,  not linear.  Cambridge  and  Inugsuin  fjords suggests  that  these  basins  exchange  at a slower  rate  with  the 
are,  however, not well  predicted,  and oceanographic  evidence  shelf  waters (A.E. Hay, pers. comm. 1983). With  longer 
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FIG. 6. Bottom  photograph,  Cambridge  Fiord, CAI, 196 m. Interfering 
horizontal  trails  made by onuphid  gravel-tubed  worms.  Whip-like  arms  are 
of buried  ophiuroids.  Width of view = 25 cm. 

residence times for the basin waters  of these two fjords, 
carbon utilization could be greater and could account for 
their uniqueness. (Care should be used  when comparing the 
relationship given in Figure 8C to individual samples and 
stations, as the model is based on basin-averaged  values.) 

From an ecological viewpoint it is  of interest to examine 
the  fjord-head  prodelta regions, where the Portlandia 
Association occurs. The deposit-feeding bivalve Portlandia 
arctica may  be remarkably abundant close to active  tidewater 
glaciers. It colonizes rapidly deposited sediments very soon 
after ice retreat. Gilbert (1982) sampled a flourishing young 
Portlandia conmunity from a  station in Coronation Fiord 
that was covered by a tidewater glacier 25 years  ago. (Port- 
landia is, surprisingly, relatively rare in  raised proglacial 
marine muds of early Holocene age,  especially as equivalent 
facies to those sampled by us are well exposed in many 
sections.) 

Although absolute levels of organic carbon may  be  low, 
lower than temperate fjords, bacterial biomass in the surface 
sediment is  high (Table 3), being  twice as high close to  the 
glacier than  6 km down-fjord. Over this distance the density 
of Portlandia decreases from its maximum of over  1000 m-2 
at 70 m  depth to 142 m-2 at 230 m, near which there is only 
0.06% organic carbon in the sediment.  Proximal to the glacier 
(= 1 km), the sedimentation rate is  predicted to be  400 
mm-a", decreasing exponentially to 2 mm-a" some 30 km 
down-fjord (Syvitski, 1989). Farrow et al. (1983)  have noted 
a similar dilution factor in British Columbia fjords where 
high inorganic input dilutes the organic carbon. 

In McBeth Fiord densities of Portlandia are lower and  the 
association is confined to depths shallower than 40 m (Fig. 
9). Where numbers are low it is observed that  other bivalves, 
such as Macoma calcarea, Mya truncata and particularly the 
byssate Hiatella arctica, and maldanid tubes occur (Fig.  9). 
Hiatella shows a definite  association  with clay bottoms, where 
sandlclay ratios are in the range 0.06-0.16. It does not, 
however,  extend into water  shallower than 20 m, even though 
an  appropriate clay bottom exists. 

The shallower Itirbilung stations are sandier than those 
observed in McBeth Fiord,  and Portlandia is accompanied 
by ophiuroids rather  than maldanid tubes. The numbers of 

Portlandia increase toward the lower limit of its depth range 
(Fig. 9), where the sandklay ratio is  lower  (Table  3). 

Variation in  Faunal Association among Fjords 

McBeth, Coronation  and Itirbilung have a similar pattern, 
with a  fjord-head Portlandia Association passing down into 
a Maldanid  Association, (Fig. 10B,C). Cambridge,  in 
contrast, has an Onuphid Association in place of Portlandia, 
and this extends further down-fjord (Fig. IOA). It also occurs 
where large side-entry drainage  basins join  the  fjord. 
Somewhat surprisingly, the Cambridge sill environment 
supports a Maldanid Association (minimum depth =225 m), 
whereas the outer Itirbilung sill  (356 m) and  a shelf bank 
(175 m) fall into  the  Onuphid Association. 

Depth Distribution of Macrobenthos 

Knowledge  of the  depth range of particular living taxa is 
essential for palaeoenvironmental reconstructions (e.g., 
Norton, 1975) and is presently somewhat limited for certain 
groups. Data tabulated in Table 4 are collated from Appendix 

FIG. 7. Bottom  photographs. 7A. Itirbilung  Fiord. ITl, 167 m. Bottom 
current  from  northeast is strong  enough to orientate  vane but  is not parallel 
to the  grooves. Stubby anemones  occur  with  abundant  ophiuroids of several 
different  sizes. 7B. Inugsuin  Fiord. INl, 1 6 0  m. Elongate  anemones  leaning 
into current  from  northeast.  Small  stellate  traces  resembling those of Macoma 
are associated  with some small burrow openings. Compass  weight  has  a 
diameter of 7.5 cm. 
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TABLE 2. Faunal  associations  defined by cluster analysis of station  macrobenthos 

Grab  sample CLUSTER B‘: Onuphid  Association  (n=14) using Jaccard’s Coefficient 
Station  Depth (m) Gravel (%) Sandklay ratio  Organic  carbon (070) Environment 
CA0.2 125  Oi50  2.16 ND prodelta 
IT5.0 175 0.20 18.57 0.20 shelf bank 
CA1.O 182 0.80 0.90 0.54 prodelta 
CAl.1 183 
CA1.2 190 1.62 0.80 0.51 prodelta 
CA0.3 200  2.83 0.56 0.54 prodelta 
CA1.4 218  3.70 0.41 0.56 prodelta 
CA1.3 240 1.30 0.46 0.55 prodelta 
CA1.5 262 0.60 0.46 0.58 prodelta 
CA2.2 292  0.71 0.69 
CA1.7 310 7.66 0.49 0.62 prodelta 
IT3.1 356 0.80 5.30 0.30 outer sill 
CA4.2 512 
CA4.3 560 
mean 272 1.88 1.22  0.45 

Clustered* by Czekanowski 
* 
* 

maldanid * 
* 
* 

- - - prodelta 

maldanid 

maldanid 
* 

- sill slope * 
* 
* 
* 
* - - 0.22 side  entry 

- 0.36 side  entry - 

f SD *28  m  f2.19 f .52# f0.15 

Grab  sample CLUSTER  A’: Maldanid  Association  (n=15) using Czekanowski’s Coefficient 
Station  Depth  (m) Gravel (%) Sandklay ratio  Organic  carbon (070) Environment 
IT1.l 256 0.40 0.40 0.47 prodelta 
IT1.2 293 0.30 0.15  0.57 prodelta 
IT2.1 310 0 4.83  0.26 side entry 
MC2.0 320 0.30 0.09 0.66 sill slope 
MC2.1 320 0 0.14 0.66 sill slope 
CA8.3 322  9.65 0.48 0.38 sill 
CA8.2 327 2.60 0.52 0.30 sill 
CA8.1 3 97 10.10 0.24  0.37 sill 
IT2.2 402 0 0.65 0.56 basin 
IT2.3 424 0 0.28 0.89 basin 
MC8.3 439 0 0.13 1.06 basin 
IT6.0 502 0 2.35  0.49 shelf basin 
MC4.1 549 0 5.65  c.  0.20 side  entry 
CA7.1 660 0.57 basin 
CA6.1 750 0.43 basin 

Clustered* by Jaccard 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

onuphid * 
* 

418 1.80f 
f 143 m f 3.65 

0.31 
f 0.14# 

0.52 
f 0.23 # excludes side-entry  and shelf samples 

Grab  sample CLUSTER D’: Portlandia Association (n=ll)  using Jaccard’s Coefficient 
Station  Depth (m) Gravel (To) Sandklay ratio  Organic  carbon ( S )  Environment  Clustered* by Czekanowski 
MC8S 5 0.1 2.67 0.36 delta  slope 
MClS 10 delta  slope 
MC3S  20 0.1 0.1 1 0.48 delta  slope 
MCl7S 20 delta  slope 
MC23S  30 delta  slope 
MCl8S 32 delta  slope 
MClSS 40 0. 0.16 0.48 delta  slope 
ITO. 1 55 0. 1.37  0.36 prodelta 
IT0.2 88 prodelta  ophiuroid 
IT0.4 148 0. 0.26 0.41 prodelta 
IT0.3 155 0. 0.13 0.52 prodelta 

* 
maldanid 

maldanid 

maldanid 

* 
* 
* 
* 
* 
* 

55 trace 0.78 0.43 
f 53 f 1.04 f 0.07 

Photograph CLUSTER B: Ophuiroid - Anemone  Association (n=6) using the Jaccard  coefficient 
Station  Depth (m) Environment 
ITTR2 126 prodelta 
IT0.4 140 (grab = Portlandia Association)  prodelta 
IT0.3 155 (grab = Portlandia Association)  prodelta 
MCO. 1 150 (grab  barren)  prodelta 
MC65.5  168 prodelta 
ITTRO  196 prodelta 

Clustered* by Czekanowski 
* 
* 
* 
* 
* 
* 

156f24 m 

Photograph CLUSTER E: Elasipod  Association (n=4) using  the  Jaccard  coefficient 
TI3 487 (from 1982 photographs)  basin 
MA5 585 (from 1982 photographs)  basin 
CA6.0 665 basin 
CA6.1  750 basin 

622f112m 
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TABLE 3. Environmental  gradients wil thin the Portlandia Association 

A.  Coronation Fiord (from Gilbert, 1982; Albright  and  Stroh, 1983;  Clattenburg et a/., 1983) 
Distance  from  glacier  (km) Water depth  (m) Portlandia (no. m-2) Organic  carbon (To) Sediment  bacterial  biomass  (mgC m-3) 

0.6 70 1285 
1.3 98 ND 0.06  45.5 
2.6 155 642 
4.4 190 284 
5.8 215 355 
6.0 248 ND  0.10  21.8 
8.8 230 142 

11.4 250 0 
15.7 266 0 

B. McBeth  Fiord  (from  Farrow,  1984;  Schafer et al., 1984) Dacrydium  Hiatella 
Distance  from  delta (km) Depth (m) Portlandia Maldanids (no. m-’) Axinopsida Macoma Sandklay 

0.2 40 452 0 40* 122  17* 0 0.16 
0.3 30 17 0 0 0 0 0 0.37 
0.5 5 174  470# 52 0 0 0 2.67 
0.7 10 244  870 104 0 0 0 0.07 
0.7 20 104 70 0 35 0 0 0.11 
1 .o 32 17  348 0 244  52 17* 0.06 
1.2 20 17 877 0 0 139 70 0.14 

C. Itirbilung  Fiord  (from  Farrow,  1984;  Schafer et a/., 1984) 

Distance  from  delta  (km)  Depth  (m) (no. m-2) Ophiuroids Sand/clay  Organic  carbon (a) 
Portlandia  Maldanids 

0.8 55 197 0 No 1.37 0.36 
1.6 88 7 0 Yes 2.51  0.32 
4.1 148 584 15 abundant** 0.26 0.41 
4.8 155 956 15 abundant** 0.13  0.52 
6.0 167 ND  ND ND 0.30  0.37 

#Coiled  sand tubes. 
*Dead shells. 
**Abundant on photos. 

Tables 1 and 2, supplemented by additional data  on species 
not used in the cluster analysis. 

Lumping the data together for statistical purposes averages 
out a great deal of variation, particularly among the  grab 
samples. Some of this may be meaningful, though there is 
unequal representation of shallow samples. Axinopsida 
orbiculata, for instance, certainly has a bimodal depth dis- 
tribution  in McBeth. Macoma calcarea, however, lives at 
shallow depth in McBeth, moderately deep in Cambridge 
and extends into deep water in Itirbilung. 

The deposit-feeding bivalves appear to have a much more 
ubiquitous depth  distribution  than  the suspension feeders, 
many of  which  were found in only one  fjord. Bathyarca 
glacialis, Chlamys islandica, Astarte montagui and A .  
borealis are confined to Cambridge samples. A.  striata was 
found only in Itirbilung, while Mya truncata and Hiatella 
arctica occurred only in McBeth (Table 4B). Most epifaunal 
organisms seen on the  bottom  photographs, however, were 
widely distributed (Table 4A). 

CANADIAN ARCTIC  FJORD MACROBENTHOS 

Most of the common faunal elements of the Baffin fjords 
occur elsewhere in the region, though  the occurrence of 
Chlamys islandica living at the head of Cambridge Fiord 
is a newly established northern limit for  the species. The 
remainder of the shallow Cambridge biota  compares well 
with that described by  Fallis (1982) from  Strathcona  Sound, 
where Strongylocentrotus is associated  with the alga Agarum 
and where Mya truncata occurs. 

In a detailed transect off Brevoort Harbour,  south of our 
area, Wacasey and Bedard (1980) noted many of the bivalves 
also found  in  the Baffin fjords,  but as Thomson (1982) also 
documents in his study of the Lancaster Sound region, Port- 
landia arctica is not  among them. This bivalve  seems 
peculiarly adapted to active fjord heads (Fig. lo), as noted 
by Sparck (1933), Thorson (1933,1934,1957) and Bertelsen 
(1 937). Although Quaternary palaeoecologists  use Portlandia 
arctica as an “arctic”  indicator,  its occurrence appears to 
be controlled more by substrate  and  other  factors. 

The shallow fauna photographed in Sunneshine Fiord (Fig. 
3) shows a strong similarity to that recorded from Upper 
Frobisher Bay  by Wacasey et al. (1979), with the kelp- 
associated isopod Arcturus  baffini and the large isopod 
Mesidotea  sabini. 

Spjeldnaes (1978:197) has offered an ingenious expla- 
nation  for variations in patchiness in mixed Portlandia- 
Macoma communities, observing that  the  former always 
suffers  more  from naticid predation than the more deeply 
buried Macoma. Portlandia therefore may outcompete 
Macoma in sediments from which naticids are excluded. 

The shallow bivalve association and a deeper polychaete 
association that we document has been observed by other 
arctic workers (cf. Hoskin, 1977; Thomson, 1982:Fig. 2). 
Also our density data support  the  notion  that biomass is 
greatest between 30 and 80 m (Wacasey et al., 1979). 

There are some striking similarities to the fauna of Alaskan 
fjords, such as those described from  Prince William Sound 
by Hoskin (1977). The fauna is dominated by deposit  feeders, 
with  suspension  feeders more abundant in glacier-free fjords. 
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FIG. 9. Environmental  gradients  and  density of bivalves  as  a  function of 
depth  within  the Portlandia Association. 

Axinopsida extends over a wide depth range. Nuculana 
pernula is much more abundant  than in Baffin, but Port- 
landia  arctica is absent from shallower  water. An equivalent 
of our Onuphid Association may  have  replaced it, as in Cam- 

C bridge Fiord. Hoskin (1977) records abundant Onuphis 
iridescens from 67 m in Alaskan fjords. Hiatella  arctica occurs 
much deeper in Prince William Sound than in McBeth  Fiord 
(111 vs. 30 m). 

PRESERVATION POTENTIAL AND APPLICATION 
TO THE QUATERNARY 

The association between  high  bivalve population and rapid 
sedimentation close to a retreating tidewater ice front (Fig. 
8C; n b l e  3) should lead to fossils occurring in life position, 
close to a boundary with underlying till. In  addition,  the 
sediments in which  they occur may  show  evidence  of slope 
deposition, such as large-scale cross bedding and slumping, 
again related to loading instabilities associated with high 
sedimentation rates. 

This has indeed been observed in many well-preserved 
raised marine deposits. These deposits have  been  used for 

FIG. 8. A. Gradients  in  sediment  parameters (sandclay ratio,  percent  organic 20 years a sour& of radiocabon dates for developing post- 
carbon,  atomic C/N ratio)  for  Cambridge  Fiord. B. Gradients in organic glacial relative sea-level curves (e.g., Andrews et al., 1970; 
carbon  for  Itirbilung,  McBeth  and  Coronation  fjords. C. Organic  carbon 
as a function  of estimated  annual  input of suspended  sediment  (data  from Andrew% 1980). During our SAFE we 
Syvitski et ai., 1984a). them behind the Keel  River delta in Cambridge Fiord, where 
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FIG. io. Occurrence of the  three  dominant  faunal associations in  Cambridge, 
Itirbilung  and  McBeth fjords. 

Mya truncata, M. psuedoarenaria (with periostracum) and 
Hiatella arctica occur in prodelta stratified muds that, from 
the evidence  of  coeval  raised tidal  flat sediments, must have 
been deposited at a depth of about 39 m at a moderate rate 
of sedimentation (Syvitski et al., 1984a). Similar deposits 
now raised  above and behind the McBeth delta reveal giant 
Macoma calcarea, Mya truncata and Portlandia arctica in 
life position in a folded slump that consists of  very finely 
micaceous, bioturbated sandy clay deposited at about 30 m 
palaeo-depth. 

There is, however, a notable increase in faunal diversity 
in many other raised marine sequences (cf.  Fig. 11). Mytilus 
edulis, for example,  is commonly found in foreset beds of 
late glacial prodeltas throughout  northeastern Baffin Island 
(Andrews,  1972). 

Between 12 500 and 9500  years  B.P., the  Champlain Sea 
spread westward through Quebec into Ontario. Its fossil fauna 
has many similarities to  that now living in the Baffin Island 
fjords; not only the molluscs  but  also ophiuroids (impressions 

and ossicles) and the isopod Mesidotea  sabini, beautifully 
preserved in a concretion (Wagner,  1984:Fig.  19,  p. 34). The 
infauna are dominated by bivalves, commonly preserved in 
life position. Portlandia arctica is ubiquitous in marine clays 
and is often also found in silty sands (cf.  Table 2, cluster 
D'). The subtidal Macoma calcarea is  less common  than the 
intertidal M. balthica, which contrasts with present Baffin 
fjord  fauna. Mya arenaria reaching 150 mm in length occurs 
in sand. Hiatella arctica is recorded from the widest range 
of lithologies, nestling among pebbles and even boulders or 
boring into  soft rocks.  Even the tiny Axinopsida orbiculata 
has been found. 

Thomsen and Vorren  (1986a,b) proposed a palaeoecology 
reconstruction of a northern Norway  shelf  environment  using 
autochthonous  faunal assemblages.  They note two major 
environmental events: 1) onset of deglaciation of the troughs, 
and 2) intrusion  into  the troughs of  warm saline Atlantic 
water at around 10 kyr B.P. There the Pleistocene arctic fauna 
demonstrate a succession that is very similar to that of a 
modern faunal development in a fjord following an anoxic 
event. Although the level of the dissolved oxygen  is suggested 
by Thomsen and Vorren to have influenced their shelf  suc- 
cession, our work  suggests the effect of sediment loading 
(fouling) is  of particular importance  for  the  interpretation 
of a deglacial sequence. Thomsen and Vorren  (1986a,b) also 
note a major faunal change at 10 kyr B.P.,  where arctic fauna 
is replaced by a Boreal faunal succession as aided by a rise 
in temperature, salinity and  nutrient supply. The  fjords of 
northeast Baffin Island have  yet to experience this later tran- 
sition, although  the equalivalent effect of sediment loading 
has been  greatly  reduced both generally through the Late Foxe 
deglacial period (since 6 kyr R.P.) and specifically since the 
retreat of the Little Ice  Age (c. 1890). 

Spjeldnaes (1978) records laminae in the Oslo Fjord raised 
sediments, with Portlandia alternating with Macoma, which 
are again slumped. There is one level of Hiatella, with minor 
associated Mya truncata and Nuculana pernula - a 
remarkable similarity to the present-day McBeth Fiord sit- 
uation. In view  of the temperature deductions that Spjeldnaes 
makes from this fossil fauna,  it is  of interest to note  the tem- 
peratures recorded in Baffin fjords at  the lower limit of our 
Portlandia Association. In McBeth, the  sharp lower  limit 
of Portlandia at 42 m coincided  with the summer  thermocline 
(Fig.  9). In Itirbilung, however, the base of the thermocline 
was at 80 m, yet Portlandia extended to 170 m at -1.OOC. 
The maximum depth in Coronation was  240 m, again at 
- 1 .ooc. 

Hiatella  arctica is the common bivalve in Quaternary fossil 
locations. In Holocene samples,  shell  characteristics compare 
favourably with those collected in  our surveys. We have not 
seen the thick and massive individuals that typify material 
30 OOO yr B.P. 

FAUNAL SUCCESSION FOLLOWING  GLACIER  RETREAT 
- A MODEL 

We propose that it is possible to use the contrasted 
environments among the SAFE-investigated Baffin Island 
fjords to model the predicted macrobenthic associations that 
should follow one another sequentially during glacier retreat. 
In  our proposed scenario, a pioneer (monospecific) Port- 
landia Association is the first to develop  within the sediments 



BAFFIN FJORD MACROBENTHOS / 243 

TABLE 4. Depth  distribution of macrobenthos in three  Baffin  Island  fjords 

Mean  depth'  McBeth  Fiord 
%on Trophic  group  Stations (n) xfo (m)  Cambridge  Fiord  (depth  range,  m)  Itirbilung  Fiord 
a)  Grab samples 
Strongylocentrotus 
Chlamys  islandica 
Mya truncata 
Hiatella  arctica 
Portlandia  arctica 
Astarte montagui 
A. striata 
A. borealis 
Nuculana pernula 
Thracia sp. 
Macoma  calcarea 
Nucula? belloti 
Yoldiella sp. 
Axinopsida orbiculata 
Bathyarca  glacialis 
Cuspidaria  glacialis 

b) From  underwater  photographs 
Epifaunal & Ophiuroids >0.4 m-' 
Sea  pens 
Anemones >0.4 m-' 
Buccinid  gastropods 
Pycnogonids 
Axius burrows? 
Irregular echinoid furrows 
Sabellids 

H 
S 
S 
S 
D 
S 
S 
S 
D 
S 
D 
D 
D 
SD 
S 
C 

SD 
S 
S 
SCC 
D 
D 
D 
S 

1 
1 
1 
3 

12 
8 
7 
7 
3 
4 
9 
5 

12 
13 
6 
3 

9 
6 
1 

17 
9 

10 
1 1  
10 

19 
19 
20 
31f  10 
61 f 54 

211f 90 
197 f 133 
190f 82 
208f 94 
208 f 129 
223 f 152 
234 f 193 
324f 113 
325 f 227 
385 f 140 
385 f 249 

135f 38 
174f 66 
206f 68 
221 f 128 
289 f 135 
296 f 146 
331 f 202 
361 f 177 

19 
19 

125 
19-322 

19-327 
125 -190 
240-262 
190-218 
181-218 
181-397 
181-750 
292-660 
660 

102-108 
102-182 
182 
102-300 
182-365 
182-665 
182-750 
365-665 

20 
20- 40 

5- 40 

20 
20-  32 
20-549 

320-549 
20-549 

320 

150-168 
150 
168-320 
168-549 
150-549 
168-320 
320 
320-549 

55-155 

155-310 

310 
310 
175-502 

310-502 

175 

72- 196 
126-288 
140-288 
12-424 

196-424 
196-288 
140-424 
140-424 

'Mean  depth (*one standard  deviation) of stations  that  contained the indicated  animal. 
H = herbivore; S = suspension  feeder; D = deposit  feeder; Sc = scavenger; C = carnivore. 

proximal to a retreating tidewater glacier (Fig. ll),  which 
experience  exceptionally  high  rates  of sedimentation. Our type 
example  is Coronation Fiord. The association would  begin 
colonization some hundreds of metres out from the ice front 
due to the completely inhospitable environment directly at 
the front. Gorlich et al. (1987; Gorlich, 1986) similarly found 
for  Hornsund  Fjord, Spitsbergen, that  too close to the ice 
front - i.e., under the influence of a submarine jet - there 
is: 1) a scarcity of biologically useful energy and digestible 
organic matter in the sediment, and 2) a rapid burial of any 
organic rich layers representative of the spring plankton 
bloom. (For details on the sediment dynamics near an arctic 
tidewater margin see Syvitski, 1989.) 

The second stage in the  faunal succession would  see a 
mature Portlandia Association develop at a period where the 
glacier front has retreated on land and a large sandur has 
formed (Fig. 11). The rates of sedimentation associated with 
this benthic association would be moderate. The  mature 
association would include Hiatella, Mya, Macoma and 
Axinopsida, in addition to Portlandia. Our type example  is 
McBeth Fiord. Interestingly, Dale et al. (1989) noted 
Axinopsida to be common to the active delta  front in Pang- 
nirtung  Fiord,  and  thus  its inclusion in this association 
remains questionable. 

The  final stage in the deglacial faunal succession is within 
an environment where the proglacial discharge is filtered 
by an extensive  valley floor  sandur (>20 km in length) 
and/or kettle lakes, the discharge of sediment is greatly 
reduced, and  thus  the prodelta rates of sedimentation are 
low (Fig. 11). The  Onuphid Association typical of this 
environment would include algae, echinoids and filter- 
feeding bivalves (Chlamys, Astarte spp., Musculus sp.). A 

critical factor in the development of this stage is the 
introduction of sea  ice (and allocthonous icebergs) and the 
deposition of dropstones  into  an environment experiencing 
low rates of sedimentation. 

.I.. 

. .  . . 

2.l 

4 ACTIVESANDUR MODERATE  SEDIMENTATION 

I MATURE Portlandla ASSOC", 
.. ,,,,,,,,,,,,,, .....,,,,, z3 ..",<". 
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BEDROCK TILL GLACKNARINE DELTAIC 

FIG. 11. Schematic  diagram  relating  faunal associations to glacial  retreat, 
modelled on stages  developed in Coronation,  McBeth  and Cambridge  fjords: 
(data from Figs. 5, 8c, 9, Tables 2, 3). 



244 / J.P.M.  SYVITSKI et ai. 

The high fossilization potential of the diagnostic bivalve 
species should enable the model to be used as a powerful 
tool  for  studies  of  Quaternary  palaeoclimate.  The 
palaeoceanographic regime,  however,  will also affect the 
model  profoundly (Andrews et ai., 1981). Tidewater 
glaciers were in active retreat in Baffin  Island  fjords 
8000 years ago, but the Portlandia community was not as 
dominant as it is today. Instead the prodelta sand facies was 
dominated by Mya truncata and M. pseudoarenaria (with 
subordinate Serripes groenlandicum and Clinocardium 
ciliatum). 

CONCLUSIONS 

The macrobenthos of Baffin Island fjords is dominated 
by widespread deposit feeders. Suspension feeding  bivalves 
are localized and more common in glacier-free fjords,  for 
example, Cambridge Fiord. 

Portlandia colonizes  rapidly  deposited  sandy  muds 
within 25 years and within 500 m of a retreating tidewater 
glacier  (e.g., Coronation Fiord). Despite very  low organic 
carbon associated with areas of high sedimentation rates, 
bacterial biomass is  twice that  found at 6 km down- 
fjord,  and densities of Portlandia may  exceed 1000 m-* 
(Table 3A). 

In McBeth Fiord, which no longer has an active tidewater 
glacier, but which has an active sandur, suspension feeders 
make their appearance, with the byssate Hiatella arctica and 
Mya truncata recorded. 

In Cambridge Fiord, where  overall sedimentation rates are 
lowest and influence from fjord-head glaciers is presently 
minimal,  a relatively prolific flora  and  fauna occurs, 
dominated by suspension feeders such as Astarte spp. and 
omnivores such as Strongylocentrotus. 

A conceptual model is postulated that describes these con- 
trasted situations and predicts the macrobenthic associations 
that should follow one  another  during glacier retreat. This 
succession begins  with a monospecific Portlandia, followed 
next by a  mature Portlandia Association and finally 
developing into  an  Onuphid Association by diverse filter 
feeders and herbivores. 
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APPENDIX - TABLE 1. The number of individuals  per  m2 recovered from  grab  samples  taken in September-October 1983 from  three 
Baffin  Island  fjords  (CA = Cambridge;  MC = McBeth; IT = Itirbilung) 

Station Depth(m) A  B C D E F G H I J K L M N 0 P Q R S T 
CA F.E. 
CA 0.2 
CA 1.0 
CA 1.2 
CA 0.3 
CA 1.4 
CA  8.5 
CA 1.3 
CA  1.5 
CA 2.2 
CA 8.4 
CA  1.7 
CA 8.3 
CA  8.2 
CA  8.1 
CA  4.2 
CA  4.1 
CA 4.3 
CA  7.1 
CA 6.1 
MC 8s  
MC 1s  
MC 3s 
MC 17s 
MC 23s 
MC 18s 
MC 15s 
MC 19s 
MC 0.1 
MC 2.0 
MC 2.1 
MC 83.6 
MC 4.1 
IT 0.1 
IT 0.2 
IT 0.4 
IT 0.3 
IT 5.0 
IT 1.1 
IT 1.2 
IT 2.1 
IT 3.1 
IT 2.2 
IT 2.3 

lo00 

14 

19  104  17 
125  73  15 7 200 
181 7 15  22  15 I 
190  110 7 22 
200  88  22  22  15 
218  292 44 15 7 7  
225  44 7 4 4  
240  73  73 
262  219  37  139 
292 44 7 
292 7 22  22 
310  58 44 7 15 7 
322  29  15 7 7 22 
327  29 7 7 7 

513 50  50 44 
520 7 
5 6 0  7 15 
660 37 7 15 7 
750  100 I 7  

397  15  29  15  15  15  73  15  (1) 

5 35  470  174  52 
10  870  244  104 
20  70  104  35 
20  887  17  17  70 139 35 
30  17 
32  348  (17)  (17) 52 244 
40  452  (17)  (40)  122  17 
42 

152 
320  95  15  73 
320 44 15  (7) 7 7  
43 9 183  15 
549 7 51 29 219  17 

55 197 
88 7 7 

148  15  584 
155  15 956 
175  73 7 7. (7)  (7)  73 7 60 
256 44 7 7 15 
293 44 7 
310  88 7 (7)  29  29  73 
356  117  117  22 15 
402 44 73 
424  117 

IT 6.0 502 37 132 (71 (7) 15 44 

Polychaetes 
A. Maldanid:  mud  tube 
B. Onuphid:  gravel  tube 
C.  parchment-tube  worms 
D. Maldanid: coiled sand  tube 
M. Infaunal  holothurians 
N. Branched  agglutinated  foraminifera 

T.  Ophiuroids 
0. Beaded  agglutinated  foraminifera 

Bivalves 
E. Astarte montagui (*A. striata) 
F. Astarte borealis 

L. Axinopsida orbiculata 

G .  Yoldiella sp. 
P. Musculus sp. 

H. Portlandia arctica 
Q. Hiatella  arctica 

I. Nucula ?bellottii 
R. Mya truncata 

J .  Macoma  calcarea 
S .  Cuspidaria  glacialis 
( ) Dead  shells 

K. Bathyarca  glacialis 
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APPENDIX - TABLE 2. The  number of individuals  per mz observed on bottom  photographs  taken  in  September-October 1983 from 
three  Baffin  Island  fjords  (CA = Cambridge;  MC = McBeth;  IT = Itirbilung) 

Number 
of Depth 

Station  frames (m) A B C D E F G H I J K L M  N 0 P Q R S T 
CA SILL1 51-73  102 79 0.02 0.14  4.09  0.02  0.10 0.19 0.02 0.07 0.02 0.43 95 
CA 0.2 22-34  108  109  5.00  0.04 1 .OO 61 
CA 1.0 74-83  182 I63 0.55  0.30 0.10 0.05 0.05 0.10 0.05 0.05  30 

CA 1.2 84-97  194 131 0.12 0.58 0.08  1.54 0.12 50 

CA Si113 149-164  225-397 5 0.07  0.70  0.07  0.03 0.13 0.03 0.23  2.67 0.10  1.10  63 
CA  4.1 35-50 515 0.10 0.19 0.66 0.03 0.06 37 

CA 6.1 1-17 750 0.07 0.29 1.39 0.25 0.04 5 

CA 1.1 109-128 183  83 0.05 0.07 0.80 0.03 0.13 30 

CA 3.0 99-108  365  0.80 0.25 0.45 0.05 0.05 3.00 50 

CA 6.0 129-148  665 0.60  0.10 0.20 0.17  2.27 0.05 0.03  0.03 0 

MC 65.5  407-432 168 0.56  23.92  0.03  0.08 0.06 0.11 24.44 0.06 17 
MC  0.1  367-387  150 0.05  0.05 62.85 0.13 0.20 36.00 0.05 2.50 5 
MC  2.1  347-366  320  1.10  0.57  2.33  0.07  0.03  1.17  3.00 5 
MC  4.1  387-406  549  1.05  0.23  1.05  0.03 0.05 0.03  0.05 
IT 0.1 258-276  72  4.32  0.03 0 
IT 0.2 183-200  88  0.80  0.14 0 
IT 0.4  200-211  140  1.83  0.40  34.75 0.05 0.03 0.05 5 
IT 0.3 285-304 155 1.03 0.50 53.80  0.15 0.05 0 
IT  TR2 238-256  126  3.29 0.12 43.38 6 
IT 1.2  277-284  283  0.60  0.25  1.00  0.85  0.10  0.10  0.05  0.05  16.25  4.30 0 
IT 2.1  305-325  288  0.75  0.10  0.10  3.55  0.07  0.15  0.07  0.43 1.90 7.23  10 
IT  TR 1 222-237  196-234  0.78  0.47  0.13  0.66  13.50  0.06  0.03 0.03 0.88 72.97 6 
IT 2.3 327-346 424  0.37  0.03 2.13  0.13  0.17  0.03  0.03 0.07 0.75 0 

EPIFAUNA (soft  substratum) INFAUNA 
Sessile K. irregular  echinoid  furrows 
A. Sabellid  tubes L. Axius burrows  and volcanoes 
B. Onuphid tubes M. Bivalve siphon openings 
C. Sea pens 
D. Anemones 
Mobile 
E. Ophiuroids (+ Asteriucifes) 

G.  Pycnogonids 
F. Buccinid gastropods (+ trails) 

H. Caridean  shrimp 
I. Elasipod  holothurians 
J. Fish 

- 

N. burrow  pits 

EPIFAUNA (rock) 
Sessile 
0. Sponges 
P. Ascidians 
Q. Alcyonaceans 
R. Bryozoans 
Mobile 
S. “Bristly”  ophiuroids 
T.  DROPSTONES (Vo of frames) 




