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ABSTRACT. The great  diversity  of  terrestrial  arthropods  in  the  Arctic suggests that  these  organisms are especially  useful to monitor  environmental 
change there,  where  warming as a  result of climatic change is expected to  be especially  pronounced and where  current conditions  are limiting for 
many  organisms.  Based on existing  information  about  arctic faunas  and how  they differ  from temperate ones, this  paper suggests several elements, 
including  ratios and  other quantitative  indexes,  that can be  used for long-term  evaluations  of  change. These elements include composition  indexes, 
range  limits,  marker  species,  interspecific  ratios,  relationship  shifts,  phenological and physiological  indicators, and key  sites.  Using  such elements in 
a  planned way would  exploit the diversity  of  arctic  insects  and  emphasize  their  importance  in  arctic  systems. 
Key  words:  arctic  arthropods,  arctic  insects,  arctic fauna, climatic change,  environmental  change, monitoring,  indicator  species,  long-term  research 

RÉSUMÉ. La  grande diversité d’arthropodes  terrestres dans l’Arctique  suggkre que ces organismes  se  prêtent  particulièrement  bien à la  surveillance 
des  changements qui prennent  place dans  cet  environnement, où l’on  s’attend à un  réchauffement  assez  prononcé suite aux  changements climatiques 
et où les  conditions  actuelles  sont  défavorables à beaucoup  d’organismes. En s’appuyant sur l’information  actuelle  concernant  les espèces arctiques et 
la  façon  dont  elles  diffèrent  des espèces tempérées, cet article  propose divers Cléments,  y compris des  rapports et d’autres  index  quantitatifs, à utiliser 
pour  effectuer  une  évaluation à long terme des  changements.  Ces  Cléments  comprennent les index de  composition, les  limites de territoire,  les  espkces 
repères,  les  rapports  interspécifiques,  les  modifications des liens,  les  indicateurs  phénologiques et physiologiques  ainsi que les  sites clés. L’utilisation 
planifiée  de ces éléments  permettrait  d’exploiter  la diversité  des insectes  arctiques et de souligner  leur  importance dans les  systèmes  arctiques. 
Mots  clés:  arthropodes,  insectes  arctiques, faune arctique,  changement  climatique, changement environnemental,  surveillance, espèces indicatrices, 
recherche à long  terme 

Traduit  pour  le journal par  Nésida Loyer. 

INTRODUCTION 

The Arctic is a critical region for interpreting environmental 
change, because conditions are close to the limits for life and 
relatively small changes might be expected to produce highly 
visible effects  on the biota. Moreover,  climatic warming is 
predicted to be especially pronounced in the Arctic (e.g., Royal 
Society of Canada, 1988). 

The diversity of the arctic fauna is reduced relative to that 
in temperate regions, but  even so there are thousands of arctic 
species, most of them insects and related arthropods. Con- 
sequently, the fauna is rich enough and the ecosystem com- 
plex enough to provide a potentially wide variety of insights 
into arctic environmental change. Such studies require both a 
conceptual base  to provide hypotheses and testable measures 
of change, and continuing commitment to acquire the basic 
information  necessary  for  long-term  evaluations.  Based  on 
what we know about the terrestrial arthropods of the Arctic, 
this paper suggests some biological indexes that can be used to 
look for and evaluate the effects of changes in conditions. 

ARTHROPODS  IN THE ARCTIC 

Over 2000 species of insects, spiders, mites and springtails 
have  been  reported  from  north of the  tree  line  in  North  America 
(Table l), and apparently nearly as many again remain to be 
recorded (Danks, 1981,1990). 

Organisms have several advantages for monitoring change. 
They integrate a variety of effects over time in a way  that indi- 
vidual short-term chemical  or physical measures  cannot do 
(e.g., Lehmkuhl et al., 1984; Williams et al., 1990). Moreover, 
although models of climatic change can forecast temperatures, 
even  the  most  sophisticated  models  indicate  the  effects of 
moisture less effectively and are unreliable in predicting pat- 
terns of cloud cover. Yet  cloud cover in the Arctic is especially 
important to organisms, because remarkable increases in the 

temperatures of ground-surface habitats result from solar heat- 
ing (Corbet, 1972; Danks, 1987a). The occurrence and abun- 
dance of organisms thus integrate the effects of temperature, 
insolation, moisture and other factors over prolonged periods. 
In a broader sense, too, faunas respond in distinctive ways  to 
physical and chemical environmental  elements by selection 
and adaptation. 

Terrestrial arthropods are integrated widely into arctic sys- 
tems.  They  play  many  biological  roles,  including  decomposition, 
predation and other trophic activities. Therefore, arthropods 
interact with other organisms, even in the High Arctic, to a 
much greater degree than might be supposed (Table 2). For 
example, they are a major source of food for birds that migrate 
to the Arctic in summer to breed. Marked changes in the arctic 
insect fauna would thus influence organisms familiar farther 
south. Not all arctic species are known in taxonomic or eco- 
logical  detail,  but  existing  information  allows  predictions 
about the general habits of genera and families, suggesting the 

TABLE 1. Number of named species of major groups of terrestrial 
arthropods reported from Canada and arctic regions (Danks, 1990) 

Number  of  named  species 
Arctic Canadian  Queen 
Canada Arctic  Elizabeth 

Group  Canada  and  Alaska Islands  Islands 

Arachnida  (spiders) 1 256 112 30 18 
Acari (mites) 1915 26 1 120 17 
Collembola  (springtails) 295? 97 49 44 
Insecta  (insects) 29 976 1468 462  242 

Total named  species’ 33612  1943 66 1 38 1 

Minimum  species  present’ - 2  231 858  553 

‘Including  minor groups not  listed. 
’Including  additional  reported,  unnamed  taxa. 

I .  B~ological Survey  of Canada (Terrestrial  Arthropods),  Canadian  Museum  of  Nature, P.O. Box 3443, Station  D,  Ottawa,  Ontario, Canada KIP 6P4 
@The Arctic  Institute  of  North  America 
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TABLE 2.  Summary of some trophic  interactions  between arthropods and other  organisms (Danks, 1990) 

Interaction 
Between  And  Notes  Examples 

Arthropods 

Arthropods 

Arthropods 

Arthropods 

Vertebrates 

Invertebrates 

Vertebrates 

Plants 

Arthropods 

Microflora 

Arthropods 

Arthropods 

Many  saprophages  depend  on  dung  or  carrion 
Some  saphrophages  scavenge  in  vertebrate 

Ectoparasites  attack  birds  and  mammals 

Several  arthropod  herbivores  eat  arctic  plants 
Many  arctic  arthropods  visit  flowers,  for  nectar 
or pollen  (and for basking or other  activities) 

Parasitoids  of  insects  such as sawflies  and  moths 

Some  mites  are  ectoparasitic on arthropods 
A  few  nest  parasites  steal  nest  provisions or 

Many  predators  attack  other  arthropods 

nests or burrows 

are  numerous 

parasitize  established  nests  of  related  species 

Arthropods  stimulate  decomposition 

Many  arctic  birds  prey  on  arthropods, 
especially  to  feed  the  young;  non-insectivorous 
adults  also  supplement  their  diet  with  insects 

Mammals  and  fish  eat  insects 

Invertebrate  parasites of  arthropods  are  widely 
distributed  in  the  Arctic 

Blow  flies,  some  crane flies, midges,  etc 
Some  mites, etc. 

Characteristic  biting flies, many  ectoparasitic  mites,  fleas,  lice,  etc. 

Butterflies,  moths,  sawflies,  aphids,  etc. 
Bumble  bees,  various  flies;  mosquitoes,  butterflies,  etc. 

Chiefly  ichneumonids,  but  also  chalcidoids,  braconids, etc. 

Water  mites 
The  bumble  bee Bombus hyperboreus Schonherr 

Diving  beetles,  several  kinds of flies,  and  other  insects.  Small 
predatory  mites  and  spiders  are  especially  numerous 

Many  mites,  springtails 

Large or abundant  prey  are  most  used  (e.g.,  crane  flies,  some  midges), 
but  also  springtails  and  other  small  arthropods 

Microsporidians,  mermithids, etc. 

nature of the fauna and the way it is constrained in arctic envi- 
ronments. Such interpretations are exemplified by the general 
information shown in Figure 1. 

CONCEPTS  AND  METHODS  FOR  LONG-TERM  ASSESSMENTS 

Composition  Indexes 

The fauna changes in distinctive ways from tropical or tem- 
perate to arctic regions in accordance with environmental fac- 
tors related to latitude. Some powerful taxonomic trends can 
thereby be identified in broad terms at the ordinal level (e.g., 
Table 3), but also at the level of family (Table 4) and genus 
(Table 5). Some  taxa  increase  proportionally  and  others  decrease 
as climates become more severe or ameliorate. For example, 
the  tables  show  that  the  order  Diptera,  the  family  Chiro- 
nomidae among the Diptera and the genus Spilogona among 
the Muscidae  are very well represented, whereas the  order 
Coleoptera,  the  family  Asilidae  and  the  genus Fannia are 
much less well represented as arctic conditions become more 
severe. The relative representation of selected groups in the 
Arctic (which can be assessed by a relatively modest local fau- 
nal inventory) therefore provides a quantitative index of envi- 
ronmental severity that can be monitored to detect long-term 
changes. 

Limit  Lines 

The edge of a species range shows where conditions have 
changed such that the organism can no longer survive. The 
tree line, typically the edge of the range of white spruce, P i c a  
gluuca (Moench) Voss, is a well-known index of environmen- 
tal change in northern North America. Species of insects like- 
wise drop out as  climates become harsher toward the north 
(Fig. 2). Some range limits coincide with the tree line or other 
marked environmental disjunctions (Danks, 198 1, in press). 
Some limits appear to accord with summer isotherms. Other 
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FIG. I .  Relative  representation  of  terrestrial  (herbivorous  and  non-herbivorous) 
and  aquatic  species  of  insects  in  a  temperate  area  (Britain)  and  in  arctic  areas 
of increasing  severity  (arctic  North  America;  the  Queen  Elizabeth  Islands; 
Batburst  Island)  (Danks, 1990). 

species evidently respond to less easily assessed factors or to 
complex influences and do not coincide with clear disjunc- 
tions (Danks and Foottit, 1989). 

Many insect  species  are relatively mobile and would be 
expected to colonize without delay currently unsuitable terrain 



ths It becam le suitable as conditions changed. Monitoring range 
limits for selected species (see also Marker Species below) 
would therefore indicate the rapidity of change. For example, 
species of several  distinctive  groups, such as  solitary  bees 
(Sakagami and Toda, 1986) and psyllids (Hodkinson, 1978), 
currently drop out at or near the tree line and might be instruc- 
tive indicators. 

Marker  Species 

Some conspicuous species that are well known taxonomi- 
cally lend themselves to  use as markers of abundance or range. 
Such species include butterflies, mosquitoes and bumble bees 
(Fig. 2d,e,f). For example, the 74 species of Canadian mos- 

TABLE 3. Relative  representation  of  the  insect  fauna in different 
regions  to  show  changes  in  the  representation  of  selected  orders 
(based  on  named  species reported) (Danks,  1990) 

Percentage of the  regional  insect  fauna  in: 

Order 

(Total no. of 

Orthoptera 
Phthiraptera 
Hemiptera 
Coleoptera 
Diptera 
Lepidoptera 
Hymenoptera 

insect spp.) 

World 

(762  659) 
4 

0.4 
7 
39 
16 
15 
14 

North 
America 

(93  728) 
1 

0.4 
12 
32 
19 
12 
19 

Arctic 
North 

America 

( 1468) 
0.4 

4 
13 
50 
1 1  
13 

42 

Canadian 
Arctic 
Islands 

Queen 
Elizabeth 
Islands 

(462) 
0.2' 
9* 
4 
6 
53 
12 
1 1  

(242) 
0.4' 
14' 
3 
3 

61 
10 
10 

'Adventitious. 
*Based  partly on  host  ranges. 

TABLE 4. Relative arctic  representation of  selected larger families  of 
Diptera,  showing the percentage Occurrence of  each  family  relative  to 
its occurrence in  the  fauna of Canada  (and  Alaska); and the  percent- 
age of the  total,  arctic and high arctic  Diptera faunas contributed  by 
each  family  (chiefly  from  information  in  Danks,  1979,  1981,  1990) 

Percentage of the 
total  Canadian  and Percentage of the  regional 

Alaskan species of the Diptera  fauna  made  up  by 
family  that  occurs  in: the  family in: 

Queen 
Elizabeth 

Queen 
Elizabeth 

Family'  Arctic  Islands  Canada  Arctic  Islands 

Tipulidae 10 1 7 7 
22 

5 
Culicidae 4 1 2  2 
Simuliidae  24 0 2  4 0 
Chironomidae  30 14 7 20 46 
Stratiomyiidae 0 0 1 0 0 
Tabanidae 3 0 2 <1 0 
Asilidae 0 0 2 0 0 
Empididae 6 2 4 3 3 
Syrphidae 3 1 7 2  3 
Ephydridae 6 1 2 1 1 
Muscidae  30 4 7 22 14 
Sarcophagidae 0 0 1 0 0 
All  other  families 7 1 56 38  25 

Total  Diptera  10 2 100  100  100 

'Numbers of species in  each  family are estimates,  except  for  a  few  families, 
such as Culicidae, that  are  better  studied,  because  in  many  groups  the species 
are  inadequately  known. 
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quitoes are well known (Wood et al., 1979). About 16 species 
occur  in  the  Arctic,  and 3 species occur even  in  the  High  Arctic, 
2 of them commonly. However, the northern species have to 
develop from egg to egg in a single year and do not persist in 
the coldest parts of the Canadian arctic archipelago. Even near 
the tree line, most species rely on incursions of warmer, modi- 
fied air to allow necessary activities (Haufe, 1966). Butterflies 
rely on sunshine to raise body and habitat temperatures for 
flight  (Kevan and Shorthouse,  1970) and likewise  are  not 
found in the coldest, cloudiest parts of the Arctic, the north- 
western  Queen  Elizabeth  Islands (e.g., Danks,  in  press). It 
might be possible to correlate the occurrence, and even the 
abundance, of some of these  well-known  and  conspicuous 
species (dependent on temperatures for activity) with simple 
temperature measurements and to make predictions from gen- 
eral models of temperature change. 

Interspecific  Ratios 

Many  arctic  species  are  linked  with  other  organisms 
(Table  2). It may therefore be possible to use interspecific 
ratios to indicate ecosystem structure and hence to reveal cor- 
related or distorted responses to environmental change. The 
relative proportions of plants and of the insect herbivores that 
eat them change dramatically with climatic seventy (Table 6), 
and a small climatic change would  be expected to produce a 
large change in interspecific ratios as extreme sites become 
slightly more favourable. For example, the high arctic sites at 
Lake Hazen, Ellesmere Island (81 O N ,  mean July temperature 
about 5.9OC) and  Polar  Bear  Pass,  Bathurst  Island  (76"N, 
mean July temperature below 5°C) (Corbet and Danks, 1974; 
Danks, 1980; Edlund and Alt, 1989) have plant species:insect 
herbivore species ratios of about 1.8:l (unpubl. analysis) and 
13:l (Table 6 )  respectively, compared with ratios of less than 
0.3:l for  temperate  regions  (Table  6).  Similar  comparisons 
might be possible for other associations when further detailed 
samples  have  been  taken.  1nsect:parasitoid  ratios  might 
depend on host availability and host-finding abilities in the 
face of climatic constraints. Aquatic:terrestrial ratios (compare 

TABLE 5 .  Relative  arctic  representation  of  selected  genera  of 
Muscidae,  showing the percentage  occurrence  of  each  family  relative 
to its occurrence in the  fauna of Canada (and Alaska) and the  percent- 
age  of the total, arctic and high arctic muscid faunas  contributed  by 
each  genus  (chiefly  from  information in Danks,  1979,  1981;  Huckett, 
1965a,b) 

Percentage of 
the  total  Canadian 

and  Alaskan species  Percentage of the  regional 
of the  genus  that  muscid  fauna  made  up  by 

occurs  in:  the  genus  in: 

Queen  Queen 
Genus (no. of Elizabeth  Elizabeth 
Canadian  spp.)  Arctic  Islands  Canada  Arctic  Islands 

Coenosia (64) 23 0 12 9 0 
Eupogonomyia ( 5 )  100 60 1 3 15 
Fannia (72) 17 0 14 7 0 
Helina (40) 23 0 8  6 0 
Hydrotaea (22) 36 0 4  5 0 
Phaonia (49) 31 0 9  9 0 
Spilogona (128) 53 13 24 42  80 
All  other  genera (97) 21 1 28  19 5 

Total  Muscidae (525) 31 4 100 1 0 0  100 
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FIG. 2. Current  northern  ranges  of  selected  species  (from  Danks, 1981) to show  approximate  northern  limits.  Note,  for  example,  the  absence  of  some  species  of  the 
southern  Arctic  from  areas  farther  north (a, b),  the  absence of  some  low  arctic  species  from  the  High  Arctic (c, d), and  the  absence  from  the  northwestern  Queen 
Elizabeth  Islands  of  some  high  arctic  species (e), even  circumpolar  species (f). a)  Distribution  of Scopula (formerly Holurcrias)  sentinuria (Geyer)(Geometridae). 
b) Distribution  of Vespula  albidu (Sladen)(Vespidae). c) Distribution in North  America  of Alopecosa hirripes Kulczynski  (Lycosidae).  d)  Distribution  in  North 
America  of Erebia rossii (Curtis)(Satyridae). e) Distribution  in  North  America of Aedes impiger (Walker)(Culicidae). f )  Distribution  of Bornbus polaris Curtis 
(Apidae). 
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TABLE 6. Relationships  of the total number  of  insect  species and the  number of herbivore  species  only  with the  number of plant species in 
selected  temperate, arctic and high arctic  areas  (after Danks, 1987a, in  press) 

Insect  species  Insect : plant  ratios 

Estimated  total  Estimated  plant 
Herbivores  only, No.  of vascular  Total  insect  species  herbivore  species  species per total 

Region  Named  spp.  Est.  total  spp.  named  spp.  plant  species per plant species per  plant species  herbivore  species 

Britain 21  871  23  600  6  750  2  080  11.3 
29  976 54 629 

3.5 0.3 
Canada 8  990?  4  153 13.2  3.9? 

1 408 Arctic  North  America 3 100 335 600 5.2  1.2  0.8 
237 Queen  Elizabeth  Islands 600  39  145  4.1  0.7  1.5 

Bathurst  Island 65  130  3 80 1.6 0.07 13 

0.3? 

Fig.  1)  reflect the fact that  shallow  waters  are  especially 
favourable habitats in  the Arctic because they  warm  up rapidly 
by solar heating of the bottom, but cool down more slowly 
because of the high specific heat of water, and so integrate 
insolation and other factors with air temperatures. 

Relationship Shijts 

By the  same  token,  changes in the  relationships  among 
organisms  would  be  expected  as  conditions  change.  For 
example, plant-pollinator relationships would  be modified by 
changes in the composition of faunas and floras, the voltinism 
of insects and the  growing  or  flowering  seasons of plants. 
Diptera  are  the  most  abundant  pollinators  in  the  Arctic 
(e.g., Kevan, 1972; Danks, 1981, 1987a), and many flowers 
are insect pollinated there, although some plants that appear to 
be adapted for entomophily reproduce chiefly or entirely by 
vegetative means and apomictic seed production. 

Pollination by Diptera is effective in the Arctic because few 
flowers  are  available  simultaneously.  Richer  floras and the 
addition of other pollinators would  be expected to change the 
dynamics of pollination. Despite the predominance of Diptera, 
some arctic flowers are pollinated by a reduced fauna of bees, 
notably Pedicularis species  (pollinated  chiefly by bumble 
bees). Some of the bee-Pedicularis relationships are relatively 
specific and so might show interesting responses to climatic 
change, especially in species, like those in the High Arctic, 
that rely entirely on insect pollination (Kevan, 1972, 1973). 
However, other Pedicularis species are partly or fully self-fer- 
tile (MacInnes, 1972). 

Phenological  Indicators 

Insect life cycles are sensitive to developmental opportuni- 
ties driven by climate, such as season length and mean sum- 
mer  temperature  (Table  7).  Some  arctic  insects,  such  as 
psyllids and mosquitoes, are constrained by life-cycle features 
to complete the life cycle within a season (MacLean, 1983; 
Corbet and Danks, 1973). Others regularly may take as many 
as 7 (Butler, 1982) or even 14 years (Kukal and Kevan, 1987). 

Weather, and hence phenology, tends to  vary greatly from 
one season to the next, and therefore long-term comparative 
studies will be required to quantify any shifts in voltinism or 
other measures. Nevertheless, mathematical analyses of trends 
over several years  would  be informative, using such indicators 
as the date on which seasonal emergence begins (cf. Danks 
and Byers, 1972, for Spilogona species; Danks and Oliver, 
1972, for chironomid species), the seasonal duration of activity 
or reproduction (cf. Corbet and Danks, 1973, for mosquitoes), 
and the number of generations per year or years per generation. 

TABLE 7. Examples of arthropod species in which duration of the life 
cycle varies  from region  to  region  according to chiefly  climatic features 

Range of life cycle 
Species duration (years)  Reference 

Meta mengei 
(Blackwall)  (Araneae) 1-2 Toft, 1983 

Hypogastrura “tullbergi 
Schaffer”  (Collembola) 0.2-5 Addison, 1977 

Pteronarcys dorsaca 
Say  (Plecoptera) 1-4 Lechleitner and 

Kondratieff, 1983 

Tipula carinifrons Chemov and Savchenko, 
Holmgren  (Diptera) 2-8  1965; Lantzov, 1982; 

MacLean, 1975 

Techniques for making such assessments are available espe- 
cially for aquatic insects. 

Physiological  Markers 

Physiological traits such as cold-hardiness and dormancy 
respond readily to local selective pressures, so that regional 
populations  differ  significantly  from  one  another. Changed 
conditions therefore would normally be followed by changed 
responses in local populations. The changes reflect either local 
adaptation (after an unknown period) or the invasion of indi- 
viduals belonging to populations from less severe sites with 
responses characteristic of those sites. 

Several locally selected traits can be  used as physiological 
markers (Table 8). For example, many characteristics of insect 
diapause, including the cues used for  control, and diapause 
intensity show very clear regional differences (Danks, 1987b). 
Similarly, levels of winter survival reflect local adaptation to 
cold and other seasonal elements. Measures of cold-hardiness, 
such as supercooling points or tolerance to freezing, differ in 
regions of different severity, even though different species in a 
region may use different strategies for cold-hardiness (Ring, 
1981, 1983).  In some populations, cold-hardiness parameters 
(such as cryoprotectant levels) change serially during the win- 
ter, chiefly in response to ambient temperatures (e.g., Baust 
and Nishino, 1991). Such changes appear to be more charac- 
teristic of populations farther south, in contrast to current high 
arctic sites where winters are continuously severe. 

As in the case of the phenological characteristics of insect 
populations,  variations  from  year  to  year in physiological 
responses governed by the weather in a given season mean 
that  long-term  studies will be required  for  effective use of 
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these  markers.  However,  because  changes  in  microhabitat 
temperatures  during  mid-winter  tend  to  be  smaller in the 
Arctic than elsewhere, long-term patterns of cold-hardiness 
might be easier to establish and model there. 

Key Sites 

Several arctic areas are especially likely to yield informa- 
tion of value. For example, sites near the boundaries of existing 
ecological zones might best detect responses to the ameliora- 
tion of climates in the  Arctic and Subarctic  (for  example, 
Churchill, Manitoba, at the tree line; Tuktoyaktuk, north of the 
current tree line but with a favourable climate). At the other 
extreme, the most severe high arctic sites in the northwestern 
Queen Elizabeth Islands (e.g., Ellef Ringnes Island: McAlpine, 
1965;  Bathurst Island: Danks and Byers,  1972)  might  also 
respond rapidly to improved temperature conditions. Most of 
the arctic terrestrial biota lives in “arctic oases,” where meso- 
climatic and microclimatic  conditions  coincide to produce 
relatively rich and warm localities well supplied with water 
(Babb  and  Bliss,  1974;  Fig. 3). Studies of selected  oases 
would discover how robust these communities of organisms 
prove to  be  in the face of substantial environmental changes. 
Moreover, the floras of central Ellesmere Island and southern 
Melville Island appear already to  be enriched relative to sur- 
rounding areas (Edlund, 1990). 

Carefully choosing a few sites is valuable for logistic rea- 
sons too. Sites about which something is already known in 
detail would  be especially profitable. Limiting the number of 
sites allows for long-term integration of activities and makes 
concerted efforts more visible. Siting them along north-south 
transects (cf. Royal Society of Canada, 1988) favours addi- 
tional comparisons. For example, sites of this type for insects 

TABLE 8. Some regional  trends  in  potential  physiological  markers 
(based on information reviewed in Danks,  1987b, and Lee and 
Denlinger, 1991) 

Typical  characteristic  in  less 
Feature  severe or southern  sites 

Diapause characteristics 
Occurrence of diapause 
Sensitive  stage for diapause  cues 

Diapause  stage 
Photoperiodic  induction 

Temperature  effects 

Diapause  intensity 

Cold-hardiness characteristics 
Level  of  winter  survival 

Supercooling  points 
Freezing  tolerance 
Cryoprotectant  profiles 

Variations  in  cryoprotectant 
levels  within or between  seasons 

Less prevalent 
Perhaps  sensitive  over  a  longer 

period  and  earlier  in  the life cycle 
Perhaps  in  a  less  cold-tolerant  stage 
Shorter  photoperiods  and  larger 

number  of  short-day  cycles 
required  to  induce  diapause 

Colder  temperatures  required to 
induce  winter  diapause,  higher 
temperatures  more  likely to avert  it 

Less intense  (shorter  under  given 
conditions) 

Variable,  but  usually  higher  within  a 

Usually  higher 
Less  prevalent 
Uncertain,  complex  information,  but 

generally  lower  levels  and  fewer 
different  substances 

Perhaps  more  variation 

species 

include, in the east, Lake Hazen and other oases on Ellesmere 
Island (e.g., Downes, 1964), Truelove Lowland, Devon Island 
(Bliss,  1977) and Baffin Island  (substantial information on 
insects  has  been  collected,  although  it  requires  collation: 
Danks,  1981:370),  as  well  as  sites in arctic and subarctic 
Quebec and Labrador. In the west, Melville Island (to a lim- 
ited extent,  see  Mosquin  and  Martin,  1967),  Banks  Island 
(many collections made, although insect data have not been 
published extensively) and Tuktoyaktuk (with a relatively rich 
fauna close to the tree line), as well as subarctic and alpine 
sites in the Yukon territory and farther south, have  been stud- 
ied. Some sites likely to be of particular value are shown in 
Figure 4, and general information about them is summarized 
in Table 9. 

MG. 3. Distribution of “arctic  oases,”  richly  vegetated  sedge-moss  meadows,  in 
the  Canadian  Arctic  (Danks, 1981, after  Babb  and  Bliss, 1974). 

lexandra  F jord 

love  Lowland 

HG. 4. Map  of  the  North  American  Arctic  to  show  selected  field  sites.  For  gen- 
eral  information  on  these  sites  see  Table 9. 
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TABLE 9. Summary  of  some  general  information  about  selected  arctic  sites 

Long-term 
mean  July 
screen  air 

Latitude  Longitude  temperature  Vegetation 
Site  ("N) ("W)  ("C)'  zone  Notes  Current  status  Sample  references' 

1. Lake  Hazen, 
Ellesmere  Island 

2.  Alexandra  Fjord, 

3.  Truelove  Lowland, 
Devon  Island 

Ellesmere  Island 

4. Iqaluit,  Baffin  Island 
[Frobisher  Bay] 

5. Isachsen,  Ellef 
Ringnes  Island 

6. Polar  Bear  Pass, 
Bathurst  Island 

7. Baker  Lake,  N.W.T. 

8. Churchill,  Manitoba 

9. Winter  Harbour, 
Melville  Island 

IO. Sachs  Harbour, 

11.  Tuktoyaktuk,  N.W.T. 
Banks  Island 

8 1'49' 

78'53' 

75"33' 

63"45' 

78'47' 

75"43' 

64'  10' 

58'45' 

74'46' 

7 1'59' 

69'26' 

71'18' 

75"55' 

84'40' 

68'33' 

103"32' 

98'23' 

95"30' 

94'04' 

110'32' 

125"15' 

132'56' 

5.9? 

4.2? 

4.3? 

7.6 

3.2 

5.0? 

11.0 

11.8 

4.5? 

5.9 

10.6 

High arctic, Lowland  oasis 

High  arctic Lowland  oasis 
enriched 

High  arctic  Lowland  oasis 

Low  arctic  Various  habitats, 
including  richer 
ones 

High  arctic, Barrens,  other 

High  arctic Lowland  oasis 
impoverished  habitats 

Low arctic  Especially  heath, 
low shrub 
tundra, wet 
sedge  meadows 

Tree  line  Arctic-boreal 
transition 

High  arctic,  Barrens,  local 

Low  arctic 
enriched  sedge  meadows 

Low arctic, Western  coastal 
near tree line  tundra 

National  park 

Field  station 

Field  camp 

Settlement,  research 
facilities 

Weather  station 

Field  station 
(Canadian Museum 
of Nature);  National 
Wildlife  Area 

Settlement 

Settlement,  research 
facilities 

National  historic 
site 

Former  weather 
station 

Settlement,  research 
facilities 

Powell,  1961;  Savile,  1964; 
Soper  and  Powell,  1983 
Svoboda  and  Freedman, 
in  press 

Bliss,  1977 

compare  Polunin,  1948 

Savile,  196 1 

Sheard  and  Geale,  1983a,  b 

Krebs, 1964; compare 
Zoltai  and  Johnson,  1978 

McClure,  1943 

Edlund, in press,  a 

Edlund, in press,  b 

Ritchie,  1984 

'Temperatures  are  approximate  for  some sites (marked "?"), based  on  records  of  varying  interval  and  reliability  (sources:  Atmospheric  Environment  Service, 
'1982; Edlund  and  Alt,  1989; and others). 
For  additional  general  information  on  vegetation, see especially  Polunin  (1948)  for  the  Eastern  Arctic,  Ritchie  (1984)  for  the  western  mainland,  and  Edlund  (1990 
and  papers cite; there)  for  zonal analysi; 

CONCLUSIONS 

This paper suggests ways to establish  the entomological 
components of a biological monitoring program; certain gen- 
eral procedures and specific measures would  be expected to 
yield information of particular value in monitoring and inter- 
preting environmental change. These procedures will require 
detailed faunal studies in key locations, which in turn support 
attempts  to  establish  quantifiable taxonomic, distributional, 
ecological and physiological indexes that can be  used to test 
expectations and to compare different sites. A long-term com- 
mitment to such detailed studies will be required to profit fully 
from them. 

Although  it is not  yet feasible to  specify  the modes by which 
data can be modelled in detail, measurements of the physical 
environment  for  comparison  with  these  indexes  logically 
would emphasize temperatures. However, in addition to stan- 
dard air temperatures, temperatures in the major microhabitats 
of arctic insects, shallow water bodies and the soil surface, 
must  be monitored. Among standard meteorological data col- 
lected at the same time, assessments of cloud cover (or hours 
of sunshine) will be needed in particular to analyze the impact 
of long-term  changes,  because  insolation  greatly  modifies 
temperatures in the microsites inhabited by arthropods. 

Comparisons of ratios and other derived statistics (such as 
those introduced in this paper) are likely to prove much more 
informative for assessing change than  the sort of information 

on insects typically collected in the Arctic: raw numbers of 
species, chiefly anecdotal observations, and in-depth informa- 
tion addressing very restricted questions. Such quantification 
allows the enormous and instructive diversity of arctic insects 
to be  used to full advantage and  at the same time emphasizes 
the importance of these organisms in arctic systems. 
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