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ABSTRACT. A phytogeoclimatic  study of the  high  subarctic  region of Canada  between  Hudson  Bay  and  the  Cordillera  at  the  northern 
Yukon-Mackenzie  border  was  undertaken  to  provide  a  verifiable  and  quantitative  synthesis  of  forest-tundra  vegetation  ecology. Three field  seasons 
of  vegetation and terrain  studies  provided  ground  truth for a  grid  of  1314  black-and-white air photos  that cover Ca. 24%  of the forest-tundra  and  adja- 
cent  low  Subarctic and low  Arctic.  Air  photos  were  analyzed for percentage cover of  nine  vegetation-terrain  types,  bedrock  and  parent  materials, 
landforms,  and  elevations. The forest-tundra, as bounded by the 1 O : l  and 1:lOOO tree:upland  tundra cover isolines, spans an average 145 f 72 km 
(median  131 km) and increases  in  width  from  northwest  to  southeast. The transition  from 101 to 1: lO treexpland tundra cover occupies  one-fourth 
to one-half the area of  the  forest-tundra. Regional slope of the land probably accounts for much  of  the  variation in width  of  the forest-tundra. 
Southern  outliers  of  forest-tundra  in  the  northwest are found mainly  in  areas  of  high  elevation.  Across  much  of the northwest,  steep  vegetation  gradi- 
ents occur near  the  northern  limit of trees.  North  of  Great Slave Lake,  steep  vegetation  gradients  shift  from the northern to the  southern  half  of  the 
forest-tundra and maintain  this  position eastward to  Hudson  Bay. The forest-tundra  of  the  northwest  receives  roughly  three-fourths  the  mean  annual 
net  radiation  available to the southeast and central districts. 
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RÉSUMÉ. On  a  entrepris  une étude phytogéoclimatique de la  zone  de  l’Extrême-Subarctique  canadien comprise entre la  baie  d’Hudson et la cordil- 
lère, située à la frontière du  Yukon-Mackenzie, en vue d’offrir  une  synthkse  vérifiable et quantitative de l’écologie  végétale de la  forêt-toundra. Trois 
saisons d’étude de végétation et  de terrain ont fourni  des données de verification  pour  une  grille  de 1314 clichés aériens en noir et blanc,  recouvrant 
environ 24 % de la  forêt-toundra et  de la  zone  avoisinante  du  Bas-Subarctique et du  Bas-Arctique.  On  a  analysé  les  clichés en vue de déterminer  le 
pourcentage de couverture de neuf  types de végktation-terrain, de roche de fond et de matériaux  mkres, de configurations et de niveaux. La forêt- 
toundra,  délimitée  par les isarithmes  du  rapport entre le  couvert  d’arbres et celui de toundra des hautes  terres de I O 0 0  pour 1 et 1 pour  1000,  recouvre 
une  bande  de  largeur  moyenne de 145 f 72 km (131 km de  mtdiane)  et s’klargit en allant  du  nord-ouest  vers le sud-est.  La  transition  du  rapport  du 
couvert  d’arbres à celui de toundra  des  hautes  terres entre 10 pour  1 et 1 pour 10 occupe de un quart à la  moitié de la zone  de  forêt-toundra.  La  pente 
régionale  du  terrain y est probablement  pour  beaucoup dans la  variation de la  largeur de la  forêt-toundra. Les îlots  méridionaux de forst-toundra dans 
le  Nord-Ouest  se trouvent principalement dans les zones de haute  altitude. Dans une  grande  partie du Nord-Ouest, des gradients de végétation 
brusques  se  trouvent près de la  limite  septentrionale des arbres.  Au  nord  du  Grand Lac de l’Esclave,  des  gradients de végétation  brusques  passent  de 
la  moitié  septentrionale à la  moitié  méridionale de la  forêt-toundra et conservent cette position  vers  l’est jusqu’à la  baie  d’Hudson.  La  forêt-toundra 
du  Nord-Ouest  reçoit  environ les trois quarts de la  radiation  nette  annuelle  moyenne  disponible  pour les régions  du  sud-est et  du centre. 
Mots  clés: clichés aériens, boréal, climat, écologie,  forêt-toundra,  Extrême-Subarctique.  Territoires  du  Nord-Ouest,  géographie  de  la  végktation,  ligne 
des arbres, végétation 

Traduit  pour le journal par  Nésida  Loyer. 

INTRODUCTION 

In recent  years, interest in the forest-tundra, or “tree line,”  has 
risen due to concern over the effects of global  warming. The 
forest-tundra may be a sensitive indicator of climatic change 
(Kellogg  and Zhao, 1988).  Recent studies predict a northward 
migration of  the forest-tundra of from 300 to 400 km in east- 
ern Canada  to  negligible  distances in the far northwest of 
Canada (Zoltai, 1988) and  an overall shrinkage of 58% due to 
northward  encroachment by grassland  and  boreal  forest 
(Rizzo, 1988). 

Prior to the  study  completed by Timoney (1988), there  had 
been no comprehensive  study of the  vegetation  and  terrain of 
the subarctic forest-tundra west of Hudson Bay. Numerous 
authors have  reported  on vegetation, terrain, and climate rela- 
tionships in localized  areas of the  subarctic (e.g., Larsen, 
1965;  Hardy  and  Associates,  1976; Zoltai and Johnson, 1978; 
Zoltai et al., 1979;  Bradley et al., 1982; Ritchie, 1962, 1984). 
Differences in aims, terminology,  methodology,  and interpre- 
tation,  however,  may  make  direct comparisons difficult among 
areas studied by different authors. 

Although  tree-line  maps  have  been produced, in one form 
or another, by various authors (e.g., Hustich, 1966; Thomas, 

1969; Hare and Ritchie, 1972; Rowe, 1972; Larsen, 1974; 
Noble,  1974; Nichols, 1976; Elliott-Fisk, 1983; Edlund, 1987; 
Thannheiser, 1987; Ecoregions Working Group, 1989),  many 
studies have  been  based  on a minimum of ground  and  airborne 
observations. Primary works in which original data are pre- 
sented are few. Much of the geographic ecology of northem 
vegetation  is derivative, based on secondary  sources of data. 

The forest-tundra, the tree line, and other subarctic-arctic 
boundaries have  been defined more often than  they  have  been 
mapped. Mackay (1969) has pointed to the limited value of 
debating the  merits of the various  boundary criteria. A verita- 
ble  “Babel of nomenclatures” of subarctic  terminology  (Hare 
and Ritchie, 1972) exists (see, for example, Bliithgen,  1970; 
Hustich, 1966, 1970, 1979;  Love,  1970;  Ahti,  1980;  Atkinson, 
1981;  Payette,  1983;  Timoney,  1988:Appendix  7;  Larsen, 
1989;  Ecoregions  Working  Group, 1989). Thus  it is often 
unclear, or left  unstated,  what data were  used  and  what criteria 
were applied to delimit the  tree line, tree limit, or the  northern 
and southern limits of the forest-tundra. 

Of various criteria used to delimit the forest-tundra, empha- 
sis has been placed on  the height, stem density, and growth 
forms of tree species (e.g., Payette, 1974; Scott et al., 1987) 
and  the typical vegetation and soils of mesic or upland  sites 
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(e.g.,  Bradley et  al., 1982;  Ecoregions  Working  Group, 1989). 
Recently, Larsen  (1989:23)  has  defined the forest-tundra tran- 
sition as “that land  where . . . unbroken forest occupies less 
than  75%  of the land surface above  the  water table (upland), 
or less than  75%  of the area is unbroken  tundra,  i.e.,  25% of 
the land area or more is occupied by  an  admixture  of forest 
and tundra. . . .” 

Universal  agreement  as to where the Arctic begins will 
probably  never  be  reached;  redefinition  to  suit  individual 
objectives of  study  may  always  be  required (Larsen, 1989). 
Four  vegetation  regions  were  sampled  in  this  study:  high 
boreal,  low  subarctic,  high  subarctic,  and  low  arctic (cf. 
Bradley et al., 1982; Timoney, 1988:Table 1, Appendix 7; 
Ecoregions  Working  Group, 1989). 

The  high  boreal  closed  crown forest region  was  sampled 
little. Based  on  widely  applicable criteria  observable on air 
photos, it is characterized by closed  crown conifer forest on 
both  upland  and  lowland  mineral soils and  open  crown conifer 
forest over  bedrock.  Treed peat plateaus and  bogs are typical 
in the lowlands.  Mixed-wood forests with  aspen  and  balsam 
poplar are absent, although  both species are present as trees 
(see mid-boreal  ecoregion  of  Bradley et  al., 1982). 

The transition to the low subarctic open  crown forest region 
is marked  by the southern limit of zonal  open  crown conifer 
forests  on the well-drained  mineral  soils of uplands. Open 
crown forest or treeless rockland is found  over  bedrock;  peat 
plateaus and palsas are typical (Bradley et  al., 1982). 

The  high subarctic forest-tundra is the landscape  mosaic of 
zonal tree and  tundra vegetation composing a transition region 
lying poleward of the  low subarctic open  crown forest region 
and  southward of the low arctic tundra region. It is bounded 
on the south by the southern limit  (<0.1%  cover)  of upland 
tundra  and  to  the  north by the northern  limit (<O. 1 % cover) of 
trees 23-4 m tall. 

The ratio of tree:upland tundra  cover  may  be  used to both 
quantify spatial vegetation change and to  delimit the zonal 
boundaries. The cardinal boundaries of the forest-tundra may 
be  delimited as the 100O:l (south), 1:l (central), and  1:1000 
(north) tree:upland  tundra  cover isolines. Between these limits, 
forest and  tundra  co-dominate in a mosaic  with  subordinate 
bog-fen  and  sedge  meadow  wetland,  dwarf  birch-willow 
shrubland, lichen rockland, burned forest, and  eroding  terrain. 
A physiognomic transition  occurs  across the forest-tundra, 
from closed  and  open  crown forests in the south to single- 
stemmed  and clonal woodlands  and thickets, either in discrete 
groves or as forest-tundra vegetation  mosaics.  Forest-tundra 
tree stems  assume a range  of plastic, climatically determined 
growth  forms  from protected or  southern sites to exposed or 
northern  sites:  these are: symmetrical  crown, flagged, whorled, 
supra-nival  skirted,  infra-nival  fruticose, and  mat (Payette, 
1974). Dwarf ericadllichen and  medium shrub/ericad tundras 
are typical of the Precambrian Shield; Dryas-legurnellichen 
and  medium  shrublDryas-legume  tundras are typical west  of 
the Shield. The southern limit of  conspicuous  upland equi- 
forms  (polygons,  nets,  circles)  correlates  closely with the 
southern limit of the forest-tundra, particularly on the Shield 
(Timoney, 1988). 

The  low arctic tundra is characterized by medium  and  low 
shrub, lichen, and  tussock tundras, sedge  meadows,  and peat 
polygon areas (ice wedge  polygons).  Upland equiforms  are 
prevalent;  peat  plateaus are absent. Its southern limit is marked 
by the northern  limit of trees 23-4 m tall (= 1: lo00 tree:upland 

tundra isoline). Dwarf  spruce  (<3 m tall) are occasional  in  the 
low arctic tundra  but are not readily observable  on air photos. 

This  paper delimits and describes quantitatively the domi- 
nant  zonal vegetation cover of the high subarctic forest-tundra 
west  of  Hudson  Bay  and relates these findings to climate. The 
object of  this  study  is  to  provide a testable delimitation of  the 
subarctic forest-tundra of Canada  west of Hudson  Bay. It is 
hoped  that the results will  prove  useful as a baseline against 
which present and future vegetation change in the western 
Canadian Subarctic may  be  compared. 

STUDY  REGION 

The  study  region includes the high subarctic forest-tundra 
in the Northwest Territories and  Manitoba  and parts of the 
adjoining low subarctic and  low arctic regions (Fig. 1). 

Geology 

The study  region  may be divided physiographically and 
geologically into two great parts (after Geological  Survey of 
Canada,  1968,  1969;  Bostock, 1976): a  core of Precambrian 
(mostly  igneous  and  metamorphic)  rocks  forming the Shield, 
and  a  surrounding  crescent of younger  sedimentary  rocks 
forming the Borderlands. 

The  majority of the Shield  has  been  metamorphosed.  While 
Archean granitic  gneisses  constitute much  of the  bedrock, 
about  40% of the Shield is composed of Archean  sediments 
and  metasediments (paragneisses and paraschists), basic and 
intermediate volcanics and  metavolcanics, granites, and Pro- 
terozoic sandstones  (Geological  Survey of Canada, 1968). 

The  northwest  is  physiographically  and  geologically 
diverse. The Horton  and  Anderson plains lie north  and north- 
west of Great Bear  Lake  and  form the Arctic Slope, where 
drainage is directly to the Arctic Ocean.  The  southern parts of 
both areas are underlain  by  Ordovician-Silurian  and  middle 
Devonian carbonates. The  northern portions of  both areas are 
underlain by Cretaceous  shales,  siltstones, and mudstones 
(Geological  Survey of Canada,  1968;  Bostock, 1976). 

The  Colville Hills are  located  northwest of Smith Arm, 
Great  Bear  Lake.  There,  Ordovician-Silurian  and  middle 
Devonian  carbonates  and  Shales project 300 m above  the sur- 
rounding plains and  reach elevations up to 675 m asl. 

The  Great  Bear  Plain  is  underlain by lower  Cretaceous 
shales, with  smaller  amounts of Ordovician-Silurian  carbon- 
ates and related rocks east of  McVicar  Arm  and  non-marine 
sandstone  and related rocks  on  Cape  MacDonnel.  Most of its 
surface lies below  300 m asl, but the Scented  Grass Hills and 
Grizzly  Bear  Mountain  reach elevations of about  450  m. 

The  Mackenzie  Delta division presents a complex surface 
of Tertiary and  Quaternary  sediments  and includes not  only 
the present delta, but  remnants of former delta and fluvial and 
marine  deposits  that  form the present  Arctic  Coastal Plain 
(Geological  Survey of Canada, 1968, 1969;  Bostock,  1976). 

Parent  Materials 

Over  99% of the study region  was glaciated  during the 
Pleistocene. The glacial deposits of the study  region are Late 
Wisconsinan,  and till constitutes about  75% of these deposits. 
Glaciofluvial deposits are widespread  but usually of limited 
area.  Lacustrine  deposits  and  lacustrine  reworked  tills are found 
around  Great  Slave  and  Great  Bear  lakes  and  the  Thelon, 
Dubawnt,  and  upper  Kazan  rivers  (Geological  Survey of 



Canada, 1967;  Bradley et al., 1982).  Alluvium  is important in 
large river valleys, such as the Mackenzie, Coppennine, and 
Thelon rivers. Colluvium  is found locally in actively eroding 
areas  (Zoltai et al., 1979). Organic materials are prevalent  on 
the  Arctic  Coastal  Plain,  the  Hudson Bay Lowlands,  and 
locally elsewhere. 

’ Tills of the Canadian Shield, generally 2-8 m thick, are 
complex  both in lithology (see Geology above) and  mineral- 
ogy;  they  are  most often non-calcareous, coarse grained, and 
have  low  clay  content. Tills derived from granitic rocks are of 
sandy  loam  and  loamy  sand texture (Scott, 1976). 

Red tills are found in central Keewatin  and  adjacent eastern 
Mackenzie  District,  where red  beds  of  the  Proterozoic  Dubawnt 
Group have been eroded and dispersed in all directions from 
the  vicinity of the  Keewatin  ice divide (Scott, 1976). 

Tills in  the northwest (Prairie-Mackenzie  province of Scott, 
1976) fall into  two  lithological  types: weak  and  generally  poorly 
consolidated shale, siltstone,  and  sandstone;  and  better-consoli- 
dated carbonate  and related Paleozoic rocks. Thickness of 
northwestern tills varies; a typical  texture  is  loam to clay  loam. 

Soils 

Cryoturbation and  low temperatures and permeabilities in 
the  typical  fine-textured  soils of the  northwest  result in a preval- 
ence  of  orthic,  regosolic,  and  gleysolic  turbic  cryosols  (Tarnocai, 
1973;  Zoltai  and Tarnocai, 1974;  Clayton et al., 1977; Tedrow, 
1977;  Canada Soil Survey Committee, 1978). 

Orthic and eluviated dystric brunisols on well-drained sites 
and gleyed dystric brunisols  and gleysolic turbic cryosols on 
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imperfectly  and  poorly  drained sites predominate across much 
of the forest-tundra of the Shield. Northward, brunisolic and 
regosolic turbic cryosols are  common  (Hardy  and Associates, 
1976;  Clayton et al., 1977;  Bradley et al., 1982;  Timoney,  1988). 

Fibric and mesic organic cryosols are typical of bog and 
residual peats and sedge fen peats respectively (e.g., Zoltai 
and  Tarnocai,  1974; Hardy and Associates,  1976; Bradley 
et al., 1982; Ritchie, 1984), and are  most  prevalent  along the 
Arctic Coastal Plain  and in  the  Hudson  Bay Lowlands. 

Climate 

The median summer position of  the arctic front has been 
widely referenced as a correlate of “tree line” (see Bryson, 
1966; Barry, 1967; Hare, 1968). Yet the  arctic front is difficult 
to define, and  at  most  times  there  is  no  sharp  boundary  between 
arctic and Pacific air (F.K.  Hare,  pers.  comm. 1986). On aver- 
age, fairly warm and moist Pacific air predominates to the 
west of this  zone,  and  cold  arctic air predominates on the 
ground to the east (Hare, pers.  comm.  1986).  Arctic airstreams 
dominate the forest-tundra for 210 months of the  year (Bryson 
and Hare, 1974). 

Climatic analyses for July by Bryson (1966:Figs. 14-17, 
19) indicate that the forest-tundra is  dominated by the follow- 
ing air masses: a) from the Cordillera to north  of  Great  Bear 
Lake, cool Pacific air (40-80% frequency) originating over 
Alaska-Yukon; b) north and northeast of Great Bear Lake, 
Alaska-Yukon (35-40%), eastern arctic (25-30%), and  western 
arctic air (20-30%); c) the central forest-tundra, Alaska-Yukon 
air  (35-45%) to the south and eastern arctic (25-40%) and 

FIG. I .  Sources of ground  truth  for  the  study  region.  Place-names  are  plotted  as:  Anderson  River  (AR);  Back  River  (BR);  Caribou  Hills (CA); Churchill  (CH); 
Churchill  River  (CU);  Colville  Hills (see Colville  Lakes  area);  Colville  Lake  (CL);  Contwoyto  Lake  (CT);  Coppermine  River  (CR);  Dease  Arm (DA); Dubawnt 
River  (DR);  East Arm (EA); Fort McPherson (FM); Grizzly  Bear  Mountain (GB); Hoarfrost  River  (HR);  Hudson  Bay  Lowlands  (HL);  Inuvik  (IN);  Kugaluk  River 
(KR); Mackenzie  Delta  (MD);  Mackenzie  River  (MR);  Muskox  Lakes (ML); Noman Range  (NR);  Nueltin  Lake  (NL);  Point  Lake  (PL);  Redrock  Lake  (RL); 
Scented Grass Hills (SG); Snare  Lake (SL); Snare  River  (SR);  Thelon  River (TR); Wopmay  River  (WR);  Yellowknife  (YK). 
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western arctic air (10-30%)  to  the  north; d) southern  Keewatin 
and  northern  Manitoba, eastern arctic air (40-50%) originating 
over the Arctic Archipelago  and  Alaska-Yukon air (25-40%). 

The subarctic forest-tundra of Canada  west of  Hudson  Bay 
lies between  the July mean  isotherms  of  10-13°C  and  within 
the July mean  isotherms of  4.5-7.0"C at the 850 mbar level 
(about 1.5 km aloft; Table  1).  Mean  daily  air  temperatures for 
the forest-tundra rise to 0°C by about  7-31  May,  with the 0" 
threshold reached earliest in the central district. The frost-free 
period  ranges  from 50 to 80 days, with the fewest frost-free 
days  found  to the north  and  northwest  of  Great  Bear  Lake.  The 
frost-free period at ground  level  may  be  only  half that of  the 
air; for subarctic Siberia, the frost-free period for the air is 60- 
90 days, but  only  30-60  days at ground level (Dolgin, 1970). 
Mean  daily air temperature falls to 0°C by about 1 October for 
much  of the forest-tundra, with the northwest sector cooling 
about  one  week earlier and  the central sector cooling to 0°C 
about  one  week  later.  Mean  annual air temperature for the for- 
est-tundra lies between  -10  and  -6.5"C east of Great Bear 
Lake  and  between -10.5  and  -9°C  westward to the Mackenzie 
Delta (Fletcher and  Young, 1978). 

Measured  values for rain and especially  snowfall in the 
Subarctic are probably  underestimates  on the order of  10-50% 
(Hare, 1971). Mean  annual measured  precipitation  is light, 
ranging  from  about  25-40  cm  in the southeast to 20-28  cm  in 

TABLE 1. Summary  of  relevant  climatic  parameters  for !ongitudinal 
districts of the subarctic forest-tundra  of western Canada 

Northwest  Central  Southeast 

April  net  radiation 
(cal.cm.'.day") 

Mean  annual  absorbed 
solar  radiation 
(kcal.cm.*.yr") 

Mean  annual  net 
radiation 
(kcal.cm.*.yr') 

July  mean  air  temp. 
@ screen  level (C) 

July  mean  air  temp. 
@ 850 mb level (C) 

Mean  annual  air  temp.** 
@ screen  level (C) 

Mean  annual  heating 
deg-days  (0°C  base) 

N  half  forest-tundra 
S half  forest-tundra 
Frost-free  period  (days) 
Median  last  date 

of  winter  snow 
cover > 2.5 cm 

Mean  date of rise 
of  mean  daily  air 
temp.  to 0°C 

Mean  date of fall 
of mean daily air 

15-35 

52-55 

11-18 
(X-15) 

10-13 

4.5-6.5 

-10.5 to -9 

3400-4 100 
2800-3400 

50-65 
15-31 May 

15-31 May 

25  Sept. 

30-70  25-75 

53-63  55-63 

13-25  14-25 
(x-21) (x-20) 

11-13  11-13 

4.5-7 6-7 

-10 to -6.5 -10 to  -7 

2800-3500 3000-3600 
2300-2800 2600 

55-80 70-75 
15-31  May 21  May -7 June 

7-31 May 15-31 May 

5  Oct. 1 Oct. 

temp. to O Q C  

'"Northwest"  extends  from  Yukon  border  to  east  side of Great  Bear  Lake; 
"Central"  extends  from  east  side of Great  Bear  Lake  to  Keewatin  border 
(exclusive of central  Thelon  area);  "Southeast"  includes  southern  Keewatin 
and  northern  Manitoba. Values are  approximations  to be used  for  compari- 

Fletcher  and  Young (1978) and  Hare  and  Hay (1974). by calculation. 
**son; data  interpolated  from  Hare  and  Hay (1974) unless noted  otherwise. 

the central district and  18-34  cm  in the northwest. Measured 
snowfall  over  southern  Keewatin  and  northern  Manitoba 
ranges  from 80 cm  near the limit of trees to  >200  cm in the 
Hudson  Bay  Lowlands.  In the northwest, snowfall is variable. 
Highest  values are recorded  in the Mackenzie valley at Fort 
McPherson  (235  cm),  but  in general the area receives 85-180 
cm.yr".  Between the northwest  and  southeast  extremes, the 
central forest-tundra receives about  100-130  cm  snow  per  year 
(Atmospheric  Environment Service, 1982b). 

METHODS 

Field  Methods 

Ground truthing of air photo interpretation was  conducted 
during the summers of  1982-84.  Travel  was  by  canoe across 
and  along the forest-tundra transition.  Study sites, other sources 
of ground truth information, and  place-names  used  in the text 
are detailed in  Figure  1.  Common  and scientific names of vas- 
cular plants follow Porsild and  Cody (1980). Tree, upland  tun- 
dra, and tall shrub stands were  examined  using line transects 
run  through representative communities,  along  which  30-70 
quadrats  were  placed  randomly.  Species  presence  and percent- 
age  cover  were  estimated for non-tree species using 0.25 m2 
quadrats. 

Trees  (dbh 210 cm)  were  sampled  with  25  m2 circular plots, 
saplings (2.5 cm 2 dbh  <10  cm)  with  12.5  m2 semi-circular 
plots, transgressives (dbh  <2.5  cm, ht. 2 0.2 m)  with  6.25  m2 
quarter  circle  plots, and seedlings (ht. <0.2  m,  and rooted) 
with the 0.25  m2  quadrats  used for the ground  layer.  Presence, 
density, dbh, height, cover, and age (increment cores) were 
determined for trees and saplings. Height  was  determined  with 
a clinometer, and  crown  cover  was  estimated by the average 
maximum radius of the stem branches. All  but  age  were also 
determined for transgressives and seedlings. 

A representative soil pit  was  analyzed  by  horizon for thick- 
ness, color, texture, structure, consistence, horizon  boundary, 
roots, pH, drainage, and  parent material, and  nearby  vegeta- 
tion  and terrain were described. 

Special transects were  designed  to  augment tree data with- 
out the use of detailed stands. Species, dbh, height, cover, and 
age were determined for  10-20  selected  trees  or  saplings. 
RelevCs  (-0.1 ha) were  used  primarily  in the lowlands. Species 
presence  was  noted  and  cover classes were estimated. 

Laboratory Methods 

A matrix of 1314  National  Air  Photo  Library  (Ottawa) 
black-and-white  photos  was established. Air photos, at scales 
from 1 5 0  000 to  1:70 000, were taken  between  1950  and 
1980,  with  68%  taken prior to 1962.  Although the imagery is 
dated, the quality is good.  Correcting for the small  amount of 
stereo overlap, the air  photos  cover  about  260 OOO km', or ca. 
24%  of the the study region. 

Air  photos  were  analyzed  at 6x magnification with a 
stereo-microscope. The following  information  was  gathered 
for each  photo: a) percentage  cover of tree, upland tundra, tall 
shrub (21.5 m), treeless wetland,  and  burned forest vegetation 
types was  estimated visually, as was  percentage  cover  of rock- 
land  (semi-barren  bedrock),  eroding terrain, water,  and unsuit- 
able  (due  to  focus,  clouds,  etc.);  notes  accompanied  each 
category; b) vegetation region (using presence/absence of tree 
and  upland  tundra vegetation and the landscape criteria given 
in Timoney, 1988:Table 1); c) prominent surficial features, 



such as parent materials, glacial landforms, beaded streams, 
rilled  peat plateaus; d) the longitude  and latitude of  the center 
of each photo; e) mean, maximum, and minimum elevation 
and  relief  were estimated by plotting  the photo on a 1:250 O00 
NTS topographic map; f) bedrock  type was determined by ref- 
erence to Geological Survey  of Canada maps  and  publications 
or other reports; g) physiographic  division (Bostock, 1976). 

Air photo cover percentages were  adjusted  to percentage of 
land surface by algorithms correcting for percentage of water 
and  unsuitable.  Photo  positions  were  transformed to a Lambert 
Conformal map  projection,  and  the air photo cover data were 
then  passed to Surface II software (Sampson, 1978). Surface II 
was used to generate 360 x 180 grid matrices, from which 
contour maps  were  drawn  that depict percentage cover of the 
vegetation-terrain types. In order to show local detail, averag- 
ing  was  kept  to a minimum  (six neighbor photos).  Checking of 
the contour maps  with  unaveraged air-photo data and  ground 
truth  indicates  the  normal  accuracy of the  isolines to be 415 km. 

Climatic data are based primarily on pattern matching of 
the forest-tundra region with the climatic maps of Hare and 
Hay (1974: climatic normal period 193 1-60; global and net 
radiation 1957-64 and  1957-65 respectively). The accuracy of 
synoptic climatic isopleths for Canada varies from a few  tens 
of kilometres to even a few hundreds of kilometres for the 
Arctic (F.K. Hare, pers. comm. 1986). Temperature-related 
isopleths are perhaps accurate to k 0.5" latitude (f55 km);  the 
degree of smoothing of isopleths is also important to consider 
(R.G. Barry, pers. comm. 1986). Maps of frost-free period, 
snow cover disappearance, etc.,  may be accurate to *lo lati- 
tude  (Barry,  pers.  comm.  1986).  Climatic  data used from 
Fletcher and  Young (1978) are based  on  the 1948-73 period; 
supplementary weather station data (Atmospheric Environ- 
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ment Service, 1982a,b)  use  the 1951-80 period. Fortuitously, 
most  of the air photos were  taken either near the  end or the 
mid-point of the climatic normal period. 

RESULTS  AND  DISCUSSION 

Width of the  High Subarctic Forest-Tundra 

The  forest-tundra  transition zone (exclusive of the Cor- 
dillera, Mackenzie Delta, and Thelon valley) averages 145  km 
wide  (median  131 km) but  varies greatly (S.D. f 72 km, n=36; 
Figs. 2, 3).  In  the  western  half  of  the  study  region from east of 
the Mackenzie Delta to north of Yellowknife,  the forest-tundra 
spans 112 k 41 km (median 105  km,  n=18);  the eastern forest- 
tundra spans 179 f 81 km (median  151 km, n=18).  Regional 
minima  are  reached a) on  the lower Anderson River (47  km); 
b) north of Dease Arm (Great  Bear Lake); and c) north of the 
East Arm (70 km). Greatest widths are found between the 
Dubawnt  River  and central Manitoba-Keewatin (228-338 km). 
The forest-tundra of the northwest is significantly narrower 
than that of the southeast (Mann-Whitney test, p=0.009) - 
i.e., about 65% as wide. The marked  west-to-east  widening  is 
especially  evident  between  Great  Slave  Lake  and  central 
Manitoba-Keewatin. 

It is difficult to compare these figures with other forest-tun- 
dra regions in the world as delimitation methods differ. ln 
eastern Canada, exclusive of coastal areas, the forest-tundra 
varies greatly in  width  from 45 to 355 km (as  mapped  by  Pay- 
ette, 1983:Fig. 3). In  the Soviet Union,  the forest-tundra (after 
Lavrenko and Sochava, 1954) varies from 20  to 200 km wide, 
with  most areas spanning 40-140 km. 

Those who disagree with  using absolute limits of trees and 
upland tundra as boundaries for the forest-tundra might  wish 
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FIG. 3. Percentage  cover of trees:upland  tundra  for  the  forest-tundra of western  Canada.  The 20 kcalan-*.yr" annual  net  isorad  (after  Hare  and  Hay, 1974)  is  over- 
laid  for climatic  comparison. VCS axis  highlights an abrupt  transition  in vegetation,  climate, and soils  within the  forest-tundra. 

to apply  narrower  ratios.  Use of rational limits of  1: 100 and 
100:l (lines 1 and 5 in Fig. 3), for example, would  narrow  the 
contiguous forest-tundra by about 10% (range 2-60%) and cut 
off the middle  Thelon River from  the contiguous forest-tundra. 
In other words,  the 1:lOO to 100:l band  spans about 90% of 
the forest-tundra. 

Boundary limits for tree:upland tundra cover of 1:lO and 
1O:l (lines 2 and 4 in Fig. 3) would  narrow  the forest-tundra 
by approximately 45-75%; i.e.,  this  band occupies 2 5 5 5 %  of 
the forest-tundra. This narrowly bounded forest-tundra would 
range in width  from  about 30 to 75 km from  east of  the 
Mackenzie Delta to the northeast side of Great Bear Lake, 20 
to 95 km from northeast of Great Bear Lake to the  East  Arm 
of Great Slave Lake, 20 to 70 km  from the East Arm to west 
of the  Dubawnt River, 40 to 100 km from  the  Dubawnt  River 
to central Keewatin-Manitoba, and 40 to 55 km  in northeast 
Manitoba (outside of  the  Hudson  Bay Lowlands). 

Regional slope of the  land  probably accounts for much  of 
the  variation  in  the  width  of  the forest-tundra. North of Dease 
Arm,  Great  Bear  Lake,  and in  the  central  district  from  the  Snare 
River southeast to the East  Arm of Great Slave Lake, eleva- 
tions rise from south to north or southwest to northeast, paral- 
lel to the  vegetation gradient. Evidently a strong topoclimatic 
gradient is created by the  northward rise of elevation, eliciting 
steep  vegetation  gradients (Fig. 4). Conversely, northward 
decrease in elevation may help explain the northward exten- 
sion of trees in the Thelon River area and  the great breadth of 
the  forest-tundra in southeast  Mackenzie  District  and  Keewatin. 
In eastern Canada, Hare (1950) suggested that  the  northward 
fall of elevation in Labrador-Ungava has the effect of partially 
offsetting  the  normal  northward  fall of temperature.  As a 
result the thermally correlated zonal divisions of the boreal 
forest are  wide  there. 

mc. 4. Northward rise of elevation  contributes to steep  vegetation  gradients 
north of the  East  Arm,  Great Slave  Lake.  Mixed open crown  forests of white 
and  black  spruce yield  dominance  to  dwarf  birch-willow/ericad  upland  tun- 
dras over short  distances;  the fall from 1OOO: 1 to 1 : 1 tree:upland  tundra cover 
may  span only  15-18 km  here; view  to NE from between Lac  La  Prise  and 
Lockhart River, at  108'44'W, 62'57'N. mean elevations here  are -395  m  asl, 
or 240 m above the level of Great Slave Lake;  12  April 1990. 

Southern outliers of the forest-tundra are  recognized by dis- 
junct  areas of upland tundra. Most occur in the northwest 
(Figs. 2, 3) and  they are due mainly to high elevations (e.g., 
Grizzly Bear  Mountain,  Norman Range, Scented Grass Hills). 
Within  the  contiguous  forest-tundra,  depression  contours 
denote localities where tree cover falls to low or zero cover 
(e.g., Caribou Hills, highlands between Snare and Redrock 
lakes, west  of  Muskox Lakes, north of Nueltin Lake) in areas 
of  high elevation and/or stony, shallow, or nutrient-poor soils 



(Fig. 3). In  the extreme southeast near  the Churchill River, the 
hachured contour approximates where  tree cover falls to <1% 
due to almost complete dominance by treeless wetland (upland 
tundra is absent). 

Locations of Steep  Vegetation  Gradients 

When the position of the 1: 1 tree:upland tundra isoline 
(Fig. 2) is considered relative to the north and south limits, 
general trends  appear.  In  the  western  half  of  the study region 
(west of Yellowknife),  the relative positions of the cover con- 
tours  vary greatly, but  the 1 : 1 contour usually lies closer to the 
northern than to the southern limit of  the forest-tundra. This 
indicates that  high tree cover extends well to the north, then 
rapidly falls to  zero. Erratic changes in the relative positions  of 
the north, 1:1, and south lines in the west are likely due to 
major  variations in elevation, parent material, and perhaps to 
fire history (e.g., east of  Inuvik). 

On  an ENE axis running  from  the middle Wopmay River to 
western Point Lake, relative dominance of tree and upland 
tundra vegetation undergoes a dramatic change (VCS axis, 
Fig. 3). The change is correlated with a steep gradient in the 
radiation climate (see Radiation Budget, below) and a shift 
from sedimentary rocks overlain by relatively nutrient-rich 
loamy cryosols in the northwest to crystalline rocks overlain 
by nutrient-poor sandy brunisols in the southeast. 

Northwest of this axis, most  vegetation change takes place 
in the  northern  half of the forest-tundra; white spruce, Dryas 
integrifolia, calciphilic legumes  and Carices, and  arctic indica- 
tors are characteristic. Southeast of this axis, tree cover falls 
rapidly  (upland  tundra  increases  rapidly) in the  southern  half of 
the forest-tundra, then extends well to the  northward in a dom- 
inantly  tundra  landscape;  black spruce, dwarf  birch,  acidophilic 
ericads, and boreal-subarctic indicators are characteristic. 

The southward plunge of  the forest-tundra north of Great 
Slave Lake  may  in  part result from  both edaphic restrictions 
imposed  upon  the  vegetation by the shallow, sandy brunisols 
of the Shield and  upon  the reproductive ecology of the domi- 
nant tree species. Available soils data (Timoney and Zoltai, 
unpubl. data)  compared with nutrient deficiency levels  for 
conifers (Lowry,  1972; Morrison, 1974) indicate that  levels  of 
soil  nitrogen, calcium, and magnesium are likely deficient for 
white spruce on Shield till soils derived from acidic crystalline 
bedrock. The shift from white to black spruce dominance at 
the  VCS axis is further noteworthy  in  that optimal germination 
of white spruce seeds occurs between 12.8-15.6"C (57-58% 
during 21-day trials) vs.  20°C (41%) for black spruce (Fraser, 
1971; Black, 1977).  Between 10 and 123°C (approximately 
the  mean  July air temperature  range for the forest-tundra), 26 
and  57% of  white  spruce  seeds germinated (Fraser, 1971)  vs. 0 
and 5% for black spruce (Black, 1977). Thus, black spruce 
may  be  unable to reproduce by seed  in the northwest, while 
white spruce may be limited by soil nutrient deficiencies on 
the Shield. 

Vegetation  and  Climate  Relationships 

East/west  of  the Cordillera and of Hudson Bay, boreal to 
low arctic vegetation zones and relevant climatic isotherms 
and isorads show an oblique NW-SE orientation. In contrast 
with the typical W-E orientation of vegetation and climatic 
zones across the circumpolar North,  the oblique orientation in 
western Canada results from the N-S Cordilleran barrier to 
zonal  flow  (J.C. Ritchie, pers.  comm. 1988), leading to a SW- 
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NE progression of spring.  In  northern Canada, the Cordillera 
restricts  Pacific  air  dominance in July to the southwestern 
Mackenzie District (Bryson, 1966). Linkage between snow 
cover, vegetation, and radiative climate is strong, such that 
change to one results in adjustment of all components (e.g., 
Hare  and Ritchie, 1972;  Lettau  and Lettau, 1975; Rouse, 1984; 
Rizzo, 1988). Vegetation-climate linkage has  been  implicated 
in intensifying the effects of  the Sahelian drought of 1968-73 
and in the  desertification of subtropical  semi-arid  regions 
since the mid-Holocene (Hare, 1979). 

Due to their lower albedo, forest stands at tree line have a 
substantially larger annual net radiation than adjoining tundra 
stands; the  balance  between tundra and forest stands strongly 
affects the regional radiation environment (Rouse, 1984). As 
such, steep or gentle gradients in tree and  upland tundra cover 
should be mirrored by those of climate and  snow  cover.  Some 
examples follow. 

Mean  July air temperature on the  ground  and at the 850 mb 
level, mean date of rise of daily  mean air temperature to O"C, 
and mean length of frost-free period (from Hare and Hay, 
1974)  all  show steeper gradients in the  northwest  than in the 
southeast. The zone of mixing  of  modified Pacific and  arctic 
air masses is  narrow in the northwest  and  broad in the  south- 
east (Bryson, 1966).  April  net radiation (Hare and Hay, 1974) 
in the southeast decreases sharply (from south to north) in the 
southern part  of  the forest-tundra. This likely correlates with 
the steep transition from dark canopy forest to snow-covered 
tundra seen in  the southern third of the forest-tundra there. 

Mean  July air temperature on  the  ground  and  mean  length 
of frost-free period decrease most  rapidly in the northwest at 
the  northern  limit  of  the forest-tundra. This may be due both  to 
the  proximity of cold ocean  waters  off  the arctic coast and to 
landscape feedback with  the  correspondingly steep vegetation 
gradient in  the  northern forest-tundra there. Summer air tem- 
peratures averaged 7°C colder for onshore than for offshore 
winds  along  the  coast of  Hudson  Bay  (Rouse  and  Bello,  1985). 

Distance  from  the 1:l tree:upland  tundra  cover  isoline  (Fig.  2) 
is correlated significantly with degree-days above 10°C for 25 
boreal  to  arctic  weather  stations in western  Canada  (after 
Atmospheric Environment Service, 1982a; Spearman's rho, 
r 4 . 9 0 4 ,  23 d.f.,  p<<O.OoOl). Comparison of weather  station 
data with the forest-tundra boundaries indicates degree-day 
(10°C) values of -140-300 for the  northwest  and  -170-330 for 
the southeast; the  1: 1 tree:upland tundra isoline corresponds 
approximately to values of -200-250 degree-days. 

The correspondence between  vegetation  and climatic gradi- 
ents  appears  to  break  down,  however, when mean  annual 
absorbed global solar radiation  and  mean  annual  net  radiation 
are compared to contours of tree  and tundra cover. These criti- 
cal  radiation  parameters  show  steeper  gradients  over  the 
southeast than over the northwest (Hare and  Hay,  1974). Thus 
the apparent paradox arises that  the forest-tundra of the north- 
west,  which generally spans only 60-140 km, occupies a zone 
where  net radiation gradients are gradual. In contrast, the for- 
est-tundra of Keewatin and northern  Manitoba  spans  228- 
338 km, yet occupies a zone of steep radiation gradients. 

The apparent paradox  can be partially resolved  when  nar- 
rower tree:upland tundra ratios are used for comparison with 
radiation gradients (Fig.  3). In the southeast, the transition 
from a ratio of 1O:l tree:upland tundra cover in the south to 
1: 10 in the north takes place in 40-100 km. Relative to the 
overall width of the forest-tundra in the southeast, this  vegeta- 
tion gradient is steep and, moreover, takes place in  the south- 
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em third of the forest-tundra, where  the  mean  annual  net  radia- 
tion gradient is also steep. 

Notwithstanding the clear vegetation-climate correlations, 
synoptic climate cannot be expected  to  account for the  variabil- 
ity  in the dominant vegetation cover within  the forest-tundra 
(evident in Fig. 3). Nor  can synoptic climate fully account for 
the great width of the forest-tundra in  the southeast and  the 
steep transitions in many places elsewhere. This variability 
derives  from  local  and  regional  differences in topoclimate,  par- 
ent materials  and soils, bioclimatic feedbacks, and fire history. 

Radiation Budget 

Mean annual heating degree-days (OOC base; Table 1) for 
the forest-tundra indicate that  the  northwest  is colder than cen- 
tral and southeast districts. By approximation, the northern 
limit of much of the forest-tundra southeast from  Great Slave 
Lake to Hudson  Bay is nearly as warm as the southern limit of 
the forest-tundra in the  northwest. The southern  portion of the 
forest-tundra  across much of the central  district is anoma- 
lously  warm. 

Upland tundra and tree cover gradients are oriented at a 
steeper NW-SE diagonal than critical thermal and radiation 
gradients (Fig. 3; cfi Hare  and  Hay, 1974), indicating that  the 
forest-tundra of the  northwest receives less warmth  and  photo- 
synthetic energy  than  the forest-tundra of central and southeast 
districts. The northwest forest-tundra, for example, functions 
on  roughly  three-fourths  the  mean annual net radiation avail- 
able to  central and southeast districts (Table 1). Due to its 
higher forest cover relative to central and southeast districts 
(Figs. 2, 3), and therefore lower average albedo, the  northwest 
may  have a more favorable net radiation balance  than  synoptic 
climate data indicate. 
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