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Soil Nutrients and Vegetation Characteristics of a Dorset/Thule Site
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ABSTRACT. We conducted a systematic study of soils and vegetation present at Arnaqquaksaat on Igloolik Island, Nunavut, a
site occupied by Dorset and Thule people prior to 1823 and probably for over a thousand years. We compared this site to an area
affected by ongoing mammal and bird activity and an area of relatively unfertilized polar semidesert. At these locations, we
estimated percent cover of vegetation, identified vascular plant species, measured soil depth, and collected soil samples. The soil
samples were analyzed for total nitrogen, sodium bicarbonate-extractable phosphorus, available potassium, available magnesium,
and pH.

Percent plant cover, abundance of plant species indicative of enrichment, and soil depth were greatest within the area of
anthropogenic influence and decreased downslope to the sea. Total nitrogen level in the upslope area of anthropogenic influence
(2.61% £ 0.88 ) was similar to that in areas of bird and mammal activity (2.54% =+ 0.78); it was higher than the levels in the
downslope area of human fertilization (0.65% + 0.82) and the unaltered polar semidesert area (0.28% = 0.38). Phosphorus levels
in the influenced areas were 5 to 6 times those in the uninfluenced polar semidesert. The magnesium level was highest in the area
of bird and mammal activity (766.8 mg/L £ 53.35), whereas potassium levels were similar throughout the study area. The lowest
pH was found in the upslope area of past human occupation, and pH differences among sites paralleled those observed for nitrogen.
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RESUME. On a effectué une étude systématique des sols et de la végétation présents 2 Arnagquaksaat dans 1’fle Igloolik au
Nunavut, un site occupé par les peuples de Dorset et de Thulé avant 1823 et probablement durant plus de mille ans. On a comparé
ce site a une zone affectée par 1’activité continue de mammiferes et d’oiseaux et a une zone de semi-désert polaire relativement
non fertilisé. A ces endroits, on a évalué le pourcentage de couvert végétal, identifié les especes de plantes vasculaires, mesuré
la profondeur du sol et prélevé des échantillons de sol. On a analysé ces derniers pour en évaluer la teneur en azote total, phosphore
extractible par le bicarbonate de soude, potassium disponible, magnésium disponible et le pH.

On a trouvé que le pourcentage de couvert végétal, I’abondance d’especes végétales révélatrice d’un enrichissement et la
profondeur du sol étaient les plus importants a I’ intérieur de la zone qui avait subi une influence anthropique et qu’ils décroissaient
en descendant vers la mer. Le niveau d’azote total dans la zone supérieure de la pente, qui avait subi une influence anthropique
(2,61 p. cent£0,88), était semblable a celui des zones ol s’exercait I’ activité des oiseaux et des mammiferes (2,54 p. cent+ 0,78);
il était supérieur aux niveaux trouvés dans la partie inférieure qui avait connu une fertilisation humaine (0,65 p. cent + 0,82) et
dans la zone polaire semi-désertique non altérée (0,28 £ 0,38). Les niveaux de phosphore dans les zones ayant subi une influence
étaient de 5 a 6 fois ceux des zones semi-désertiques polaires n’ayant pas subi d’influence. Le niveau de magnésium était le plus
haut dans la zone ot s’ exercait 1’activité des oiseaux et des mammiferes (766,8 mg/L £ 53,35), alors que les niveaux de potassium
étaient semblables dans toute la zone d’étude. Le pH le plus bas se trouvait dans la zone supérieure de 1’endroit ayant jadis été
occupé par I’étre humain, et les différences dans le pH parmi les sites s’alignaient sur celles observées pour 1’azote.

Mots clés: perturbation anthropique, Arctique, sol, végétation

Traduit pour la revue Arctic par Nésida Loyer.

INTRODUCTION in polar desert and semidesert areas—Ilittle water (Svoboda,

1977; McCown, 1978; Woodley and Svoboda, 1994).

In the Arctic, human habitation and animal activity have  Nitrogen is the primary limiting nutrient in most arctic
profound effects, which may endure for hundreds of years soils, followed by phosphorus (Haag, 1974; Svoboda,
(Lutz, 1951; Porsild, 1955; McCartney, 1979). The arctic 1977; Chapin, 1987; Muc et al., 1994). In the Arctic,
environment severely limits plant growth because of the  nutrients entering biogeochemical cycles are less avail-
cool, short growing season, low levels of nutrients, and—  able to plant growth than in more southerly areas largely
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FIG. 1. Map showing the location of the area of enrichment from past human
habitation and associated activities at Arnaqquaksaat on Igloolik Island, Nunavut,
Canada.

because low temperatures hinder organic matter decompo-
sition and microbial nitrification (Haag, 1974; Svoboda,
1977; McKendrick et al., 1980). Although cold soils do not
limit the uptake of nitrogen by plants, they do reduce the
uptake of phosphorus (Haag, 1974). Some human and
animal activities alter biogeochemical cycles by adding
nitrogen and phosphorus into the ecosystem (Rastetter et
al., 1991). Higher levels of soil nutrients result in higher
growth rates of arctic plants, which then enhance rates of
nutrient cycling (Hobbie, 1995).

Where there is adequate moisture, human and animal
activity can alter the biogeochemical cycling of arctic
ecosystems both directly and indirectly, because nitrogen
and phosphorus inputs increase growth of mosses and
other plants (Lutz, 1951; McCartney, 1979; Rastetter et
al., 1991; Forbes, 1994). Nutrient-enriched areas have
greater soil depth, greater vegetation cover (Bliss and
Gold, 1994), and characteristic plant species that differen-
tiate them from the surrounding landscape. Increased plant
growth in turn promotes cycling of nutrients. Even a small
amount of organic production and decomposition results
in a large increase in nutrient availability (Shaver et al.,
1992). Cyanobacteria associated with mosses fix biologi-
cally significant amounts of nitrogen (Karagatzides et al.,
1985), and mosses often dominate the vegetation in wetter
areas. This dominance results in an accumulation of peat,
which decomposes slowly because of the presence of
cellulose and antibiotic compounds and the somewhat
anaerobic conditions of waterlogging (Russel, 1990). Mi-
croorganisms in these enriched sites have greater func-
tional diversity than those in adjacent unenriched sites
(Derry et al., 1998).

Our aim was to compare the soil characteristics and
vegetation in an anthropogenically enriched area, areas
enriched by mammal and bird activity, and adjacent areas

of unaltered polar semidesert. All the sites are on Igloolik
Island, Nunavut, Canada, on raised beach dominated by
cushion plants, and represent a polar semidesert type of
vegetation (Svoboda, 1977). The site of anthropogenic
fertilization was within an area identified with ruins from
both Dorset and Thule cultures, where much organic depo-
sition once occurred from walrus and whale processing
and refuse associated with human habitation (Rowley,
1997). The occupation on this site, dated from over 1000
years ago to about 150 years ago (Rowley, unpubl. data),
resulted in large-scale organic deposition. Parry and Lyon
noted that the houses were unoccupied in 1823, but that
does not indicate that they had been abandoned (Rowley,
1997). Large amounts of organic matter and plant species
indicative of nitrogen and phosphorus enrichment are
often associated with Dorset/Thule sites today (McCartney,
1979; Forbes, 1996). The site we chose offers an excellent
opportunity to study how soils and vegetation in polar
semidesert have been altered by Dorset/Thule occupation.

MATERIALS AND METHODS
Study Sites

The study site, called Arnaqquaksaat, is located on the
southwestern tip of Igloolik Island, Nunavut (69° 22' N,
81° 47" W; See Fig. 1). The area, characterized as mid to
high Arctic, has less than 200 mm of annual precipitation
(mostly snow). It has cold temperatures in winter (-30°C to
-35°C February means, as measured in a standard meteoro-
logical screen) and cool summers (5°C to 10°C July means)
about 15 weeks long (McKay et al., 1970). Arnagqquaksaat
(Borden Number NiHf-4) is along the slope of a raised
limestone beach (Dredge, 1991) where there are ruins of
Thule and Dorset stone, sod, and whalebone houses (11 m
above sea level) that predate 1823. On top of a ridge 50 m
high are ten Thule houses and at least four Dorset
semisubterranean dwellings. Just below the ridge is a
Thule tent ring, and farther downslope are another four
Thule house ruins and some caches (Rowley, 1997). Lem-
ming burrows were evident around the rocks. Although the
highest parts of the study site emerged from the sea 1000
years ago through isostatic rebound (Dredge, 1992), lower
areas emerged as recently as 700 years ago (Rowley,
1997). The site of presumed anthropogenic fertilization is
approximately 8600 m? of almost continuous plant cover
that begins in front of the main line of dwellings and
extends downslope to the sea (Fig. 2). We divided the
study site into “influenced” and “uninfluenced” areas: the
“influenced” area showed obvious difference (almost con-
tinuous plant cover) from the surrounding “uninfluenced”
polar semidesert at the same elevation, which appeared
relatively pristine and had much less vegetation. We sub-
divided the influenced part of the site into an “upper area”
(7 to 69 m downslope from the house entrances) and a
“lower area” (69 to 110 m downslope from the house
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FIG. 2. Aerial photograph of Arnaqquaksaat on Igloolik Island, Nunavut,
showing the area of anthropogenic influence (at centre) and the surrounding,
uninfluenced tundra. Foxe Basin is visible at bottom right and in the strip of
water beyond Arnaqquaksaat at upper left, while the water seen at bottom left
is a lagoon. The area of anthropogenic influence extends downslope from left
to right. Its dark bottom margin is a strip of Saxifraga tricuspidata. The line
running through the upper margin of the same area is a vehicle track.

entrances) for comparisons of soil depth, total percent
plant cover, and soil chemistry (Fig. 3).

In the surroundings (less than 500 m from the site
fertilized by pasthuman activity), surface soils from around
bird perches on large, isolated rocks (i.e., not part of rock
complexes that might have been anthropogenic) were used
to examine the effects of mammals and birds on soil
nutrient content. Rocks used as bird perches were easily
identifiable by the presence of regurgitated bird pellets,
feces, abright orange lichen, Xanthoria elegans (Thomson,
1979), and many lemming burrows. The rocks chosen, at
approximately the same elevation as Arnaqquaksaat, were
assumed to be about the same geological age as the site of
anthropogenic fertilization. Unenriched polar semidesert
(within 50 m of the human-influenced study area and
within about 200 m of the bird perch rocks) was the area
hypothesized to be “uninfluenced” by humans.

Field Methods

Rastetter et al. (1991) reported that most of nitrogen
present within an arctic ecosystem is found in the soil
(including the permafrost) rather than in the vegetation.
Because nitrogen is a limiting nutrient to plants on the
tundra (Haag, 1974), soil nitrogen content was used to
indicate patterns of nutrient enrichment. Low levels of soil
phosphorous can restrict nitrogen fixation, so we meas-
ured phosphorous in the soil as well. Data collection
occurred over four days from 25 to 28 August 1996.

Soil depths (which included peat, where present) were
measured, using a metal probe and tape measure, at about 0.9
m intervals along six cross-slope transects (perpendicular to
the slope) that were 15 to 30 m apart across the site. The
transects crossed the entire influenced area and extended 9.5
to 14.5 m into the uninfluenced area on either side (Fig. 3).

Several highly visible plant communities are present on
the sites, and transects across (at the same elevation) and
down (from the ridge to the shore) could be delineated. To
characterize the vegetation, we estimated plant species
present, their percent abundance, and the total percent
plant cover on the influenced area, using cover estimates
within 0.5 m X 0.5 m quadrats at 14 m intervals along each
of the six cross-slope transects (Fig. 3). Along each 70 m
transect, we examined five quadrats, three within the influ-
enced area and two in the adjacent uninfluenced areas.

Soil samples were taken from the influenced site along
three downslope transects (I, II, IIT) that extended from the
entrances of the Arnaqquaksaat ruins to the beach (Fig. 3).
Of the two outer transects, transect I was closer to the edge
of the hypothesized “influenced” area than was transect
III. The central transect, II, was more intensively sampled
(9 samples) than the outer transects (4 samples each).
Along the central transect, a soil sample was taken from
each vegetation zone and each transition area between
zones: (1) house entrance zone; (2) transition area; (3)
thick vegetation and moss zone; (4) transition area; (5) thin
vegetation and moss upper plateau zone; (6) outwash area;
(7) thin vegetation and moss lower plateau zone; (8) beach
fringe; and (9) beach (Fig. 3). Along the two side transects,
soil samples were taken from a smaller array of vegetation
zones: house entrance zone (a, w); thick vegetation and
moss zone (b, x); thin vegetation and moss zone (c, y); and
beach fringe (d, z; See Fig. 3). The soil cores were col-
lected within the top 25 cm of soil, using a metal cylinder
9 cm long and 6.5 cm in diameter. The cores of soil, of 9
cm maximum depth, were packaged in labelled, zip-lock
bags and frozen for transport to the analytical laboratory at
the University of Guelph.

Similar methods of soil collection and preservation
were used for samples from the area enriched by mammal
and bird activities and the uninfluenced, adjacent areas of
polar semidesert. Five bird perch boulders were chosen for
sampling in a location within 500 m and at about the same
elevation as the Dorset/Thule houses. Soil was sampled at
the foot of each boulder, where the quantities of regurgi-
tated pellets, feces, and lemming burrows were highest.
Seven soil samples were also taken from polar semidesert
areas near (< 200 m) the ruins that were presumed to be
uninfluenced. The soils collected for nutrient analysis
ranged from pure mineral soils (taken from areas without
vegetation) to well-developed organic soils. Recognizable
peat was removed from the organic soils and was not
included in the soil cores.

Laboratory Methods

The soil samples remained frozen until ready for analy-
sis at the Analytical Services Laboratory at Land Resource
Sciences, University of Guelph. Analysis was a standard
fertility package that included determination of total per-
cent nitrogen, conducted on a Leco FP-428 Combustion
System with a thermal conductivity detector; sodium



Downslope
Transect |

Cross-slope
Transect #1

SOILS AND VEGETATION OF A DORSET/THULE SITE « 207

Downslope
Transect li

v

)
\

Thule hut “.

entrances

Downslope
Transect Il

v

LEGEND

unaltered polar
semidesert

entrance to
Thule houses

upper area of

B

Cross-slope
Transect #2 |

Upper Area

Cross-slope
Transect #3

_Cross-slope
Transect #4

Cross-slope
Transect #5

Lower Area

Cross-slope
Transect #6

thick moss

fransition area
between Cand E

fower area of
thin dry vegetation

beach
fringe

beach

QO mIO o>

unaltered poiar
semidesert

soil chemistry
sample points
Downslope
scheme A

Q
Q T

soil chemistry
sample points
Downslope
scheme B

soil chemistry
sample points
Downslope
scheme C

sample points
vegetation and

20m X
soil depth

Foxe Basin

FIG. 3. Diagram of the area of anthropogenic influence at Arnaqquaksaat, Nunavut, showing vegetation zones (A —H), sampling points for soil chemistry (points

a—d, 1-9, and w—z on downslope transects), and sampling points for soil depth
of influence are semischematically presented for location between 9.5 and 14.5

bicarbonate-extractable phosphorus (mg/L), using a
Technicon Auto Analyzer according to ammonium
molybdate blue methodology; available potassium and
magnesium (mg/L), measured by atomic absorption
spectrophotometry; and pH. These laboratory methods
followed the outlines of the Ontario Soil Management
Committee (Carter, 1993).

Statistical Analysis

Sigmastat software (Sigmaplot, Jandel Scientific, San
Rafael, California 94912-7005, U.S.A.) was used to con-
duct statistical analyses. Soil depth, total percent plant
cover, and soil chemistry were compared among sites,
using either a one-way ANOVA, followed by a Student-
Newman-Keuls test, or a Kruskal-Wallis one-way ANOVA
on ranks, followed by a Dunn’s multiple comparison test
(Glantz, 1992). We used a Spearman rank correlation to
test the null hypothesis, that total percent plant cover and
soil nutrient levels were not related to distance downslope
from the ruined houses, by calculating the probability that
such a relationship would be different from zero. This
nonparametric analysis was used to avoid the assumption
that a linear relationship existed between the variables.

and vegetation (black dots on cross-slope transects). The points outside the area
m beyond the area of influence.

RESULTS
Soil Depth

Soil depth along the cross-slope transects (Fig. 3) ranged
from about 2.5 cm up to 14 cm (Fig. 4). The greatest soil
depths were near the centre of the area of anthropogenic
enrichment. The shallowest soils (0 cm on loose broken
stones) were generally less than 2.5 cm deep and occurred
outside the area of presumed human influence (Table 1).
Soil depth was significantly greater on the upper influ-
enced area (11.59 £ 4.19 cm) than on the adjacent upper
uninfluenced area (6.23 £ 3.27 cm) and the influenced area
further downslope from the houses (2.54 £ 2.42 cm)
(p <0.05, Dunn’s test). The soil depth on the lower influ-
enced area was significantly greater than on the adjacent
lower uninfluenced area (1.84 = 2.20 cm, p <0.05, Dunn’s
test; Table 1).

Vegetation
The vegetation zones, sampled along the cross-slope

transects, were dominated by different plant species (Ta-
ble 2). In Zone B (entrance to houses), Salix arctica was
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FIG. 4. Distance along cross-slope transects (m) versus soil depth (cm) on the
area of anthropogenic influence at Arnaqquaksaat, Nunavut.

the dominant plant. Zone C (upper area of thick, moist
moss and other vegetation) was dominated largely by the
tall, loose turf moss, Plagiomnium medium. Zone D (a
transition area between the wetter, more deeply vegetated
upper area and the lower area of dry vegetation) was
dominated by Bryum sp. and S. arctica. The dominant
plants of Zone E (the lower area of thin, dry vegetation)
were an assemblage of Plagiomnium medium, Dryas
integrifolia, and Bryum sp. The beach fringe (Zone F)
mainly had mixtures of Saxifraga tricuspidata, P. me-
dium, and Bryum sp. The beach (Zone G) had very sparse
vegetation, represented by Bryum sp. and a little Saxifraga
oppositifolia. Dryas integrifolia dominated Zones A and
H, which represented uninfluenced polar semidesert. To-
tal percent plant cover on the upper influenced area was
significantly greater (85.2 = 19.6%) than on the adjacent
upper uninfluenced area (38.1 £ 35.5%, p <0.05, Dunn’s
test; Table 1).

Soil Chemistry

Total percent nitrogen was highest in the area enriched
by ongoing mammal and bird activities (2.54 +0.78%) and
the upper area of past enrichment from human habitation
and activities (2.02 = 1.18%; Table 1). Nitrogen concen-
trations at these sites were significantly higher than in the
lower influenced area further downslope from the houses
(0.44 £ 0.77%) and in the unaltered polar semidesert (0.28
+0.38%, p <0.05, Student-Newman-Keuls test; Table 1).
The level of sodium bicarbonate-extractable phosphorus
was higher in the upper area of past human influence
(11.00 £+ 8.92 mg/L) and in the soils around the rocks that
were subject to ongoing fertilization from birds and mam-
mals (8.00 = 5.79 mg/L) than in the lower area of
anthropogenic influence (2.60 £ 0.89 mg/L) and the
“uninfluenced” area on the polar semidesert (1.57 = 0.98
mg/L, p <0.05, Dunn’s test; Table 1). There were no
significant differences between sites in the amounts of
available potassium. Available magnesium, however, was
most concentrated in the soils around the bird rock perches,
and its level there (766.80 = 53.35 mg/L) was significantly

greater than in the upper (450.60 = 177.40 mg/L) and
lower (143.80 £ 94.60 mg/L) areas of past human influ-
ence and the unaltered polar semidesert (237.10 = 134.80
mg/L; p <0.05, Student-Newman-Keuls test; Table 1).
Values for soil pH were relatively neutral at all sites.
Significant differences observed between the sites for soil
pH, as revealed by the Student-Newman-Keuls test (p <
0.05), were the same as those demonstrated for total
percent nitrogen (Table 1).

Spearman Rank Correlations

In the area of past human influence, the Spearman rank
correlation coefficient (r,) for total percent plant cover and
distance downslope from the house entrances was -0.63,
indicating a direct and significant relationship (Table 3).
On the adjacent uninfluenced area, downslope from the
same elevation as the house entrances and parallel to the
downslope sampling schemes (transects I, II, and III) on
the influenced area, there was a more significant decline in
the total percent plant cover (r,=-0.83; Table 3, Fig. 3). For
total percent soil nitrogen and distance downslope, a sig-
nificant relationship was found on the influenced area (r,
=-0.83), but not on the uninfluenced area (rS =-0.14; Table
3, Fig. 5). We found significant correlations between
magnesium levels and distance both within (r,= 0.83) and
outside (r,= 0.60) the influenced area. Of interest is the
correspondence of pH and distance downslope on the
influenced area (r,= 0.70), which was less pronounced on
the adjacent, uninfluenced polar semidesert (r,= 0.56;
Table 3).

DISCUSSION AND CONCLUSIONS

Our study demonstrates the impact on soil develop-
ment, vegetation growth, and soil chemistry of long-term
fertilization from indirect and direct influences of human
habitation and animal activity. The upslope area of past
anthropogenic enrichment had significantly deeper soils
than the adjacent “uninfluenced” area. Other authors have
also noted greater soil development at archaeological sites
compared to surrounding areas in the Arctic (Lutz, 1951;
McCartney, 1979; Moore, 1986; Moore and Denton, 1988;
Forbes, 1996). Higher concentrations of nitrogen (Lutz,
1951; McCartney, 1979; Forbes, 1996) and phosphorus
(Lutz, 1951; Proudfoot, 1976; McCartney, 1979; Moore,
1986; Moore and Denton, 1988; Forbes, 1996) were corre-
lated with these deeper soils.

Plant species characteristic of nitrogen- and phospho-
rus-enriched Arctic sites (McCartney, 1979; Forbes, 1996;
Lewis and Belyea, n.d.) were present at the site of past
anthropogenic fertilization. Although not dominant within
the designated vegetation zones, vascular plants indicative
of nutrient enrichment were found, including Cerastium
alpinum, Draba sp., Papaver radicatum, Polygonum
viviparum, Saxifraga caespitosa, Saxifraga cernua,
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TABLE 1. Soil depth, percent total plant cover, total nitrogen, sodium bicarbonate-extractable phosphorus, available potassium,
available magnesium, and pH (mean + SD) on the area of human influence (Arnaqquaksaat), the area of bird and mammal influence
(bird perches), and unaltered polar semidesert at Igloolik Island, Nunavut (69°22' N, 81<47"' W).

Area enriched
by ongoing
mammal and bird
activities

Polar semidesert area
(raised beach terrain)

Area enriched Test Used:
by past
human habitation

and activities

Area enriched
by past
human habitation
and activities

F = one-way ANOVA
H = Kruskal-Wallis

(bird rock perches) (Upper Area) (Lower Area)

Soil depth Upper area (cm) 6.23  (3.27)a! - - 11.59 4.19)b 254 (242)c H=92.0; p<0.002
Soil depth Lower area (cm) 1.84 (220)a - - - - 254 (242)a H=133; p=0.249
Total Plant Cover (%) 38.10 (35.50) a - - 85.20 (19.60) b 49.50 (42.30)a,b H=848; p=0.014
Total nitrogen (% by dry mass) 0.28 (0.38)a 2.54  (0.78)b 2.02 (1.18) b 044 (0.77)a F=10.2; p=0.0001
Sodium bicarbonate- 1.57 (0.98)a 8.00 (5.79)a,b 11.00 (8.92)b 2.60 (0.89)a,b H=14.3; p=0.0025
extractable phosphorus (mg/L)

Available potassium (mg/L) 54.60 (25.00)a 7420 (45.36)a 66.60 (41.10) a 3270 (10.40) a H=4.92; p=0.178
Available magnesium (mg/L)  237.10 (134.80) a 766.80 (53.35)b 450.60 (177.40) c 143.80 (94.60) a F=222; p<0.001
pH 754 (0.13)a 7.04 (0.11)b 7.01 0.25)b 7.53 (0.335)a F=119; p<0.001

! Within each row, means accompanied by different letters (a, b, or ¢) are significantly different from one another (p <0.05), as determined
by one-way ANOV A followed by the Student-Newman-Keuls test, or by Kruskal-Wallis one-way ANOV A on ranks followed by Dunn’s

multiple comparisons test.

Saxifraga hieracifolia, Saxifraga hirculus, Alopecurus
alpinus, Arctagrostis latifolia, Poa hartzii and Dupontia
sp. The moss species found in this enriched area,
Plagiomnium medium (dominant in Zone C) and Bryum sp.
(dominant in Zones D and E) are particularly important
because of their association with nitrogen-fixing
cyanobacteria (including Nostoc sp.; Karagatzides et al.,
1985). Bryum spp. are short, compact mosses with a
cushion subformation, but Plagiomnium medium is a tall,
loose moss (Longton, 1988) that contributes to soil devel-
opment by accumulating deep organic, nitrogen-rich peat
over the mineral soil (Russel, 1990). Lichens (Kallio and
Kallio, 1975) and anaerobic bacteria (Karagatzides et al.,
1985) are unimportant as sources of fixed nitrogen. No
legumes were present at the site of past anthropogenic
fertilization that might have contributed to biologically
fixed nitrogen. The greatest amount of nitrogen fixation in
the Arctic occurs in moss associations (Granhall and Lid-
Torsvik, 1975).

The distributions of Salix arctica and Saxifraga
tricuspidata on the site of past anthropogenic fertilization
were surprising. Salix arctica, which is not a plant indica-
tive of nutrient enrichment, grew luxuriantly in Zone B
near the entrances to the Thule houses than in less enriched
areas downslope and on adjacent “uninfluenced” polar
semidesert. Salix arctica has one of the widest ranges of
tolerance to environmental factors of any arctic plant
species (Svoboda, 1977). Saxifraga tricuspidata, also not
a plant associated with enriched areas, grew in relative
abundance on the enriched beach fringe (Zone F) as well
as on adjacent “uninfluenced” polar semidesert. Although

Salix arctica and Saxifraga tricuspidata are not found
exclusively at nutrient-enriched sites (Forbes, 1996), the
growth of these plants probably is enhanced under such
conditions (Tank and Kevan, unpubl. data).

Dryas integrifolia was the most common plant species
found within the “uninfluenced” polar semidesert. The
frequency of this plant decreased as soil depth, nitrogen
level, and phosphorus level increased. Dryas integrifolia
is adapted to growing in nutrient-poor substrates that are
relatively warm and dry (Svoboda, 1977; Fetcher and
Shaver, 1990).

Unenriched raised beaches are dominated largely by
Dryas integrifolia (Dansereau, 1954; Svoboda, 1977; Muc
et al., 1994). Svoboda (1977) recognized three physical
vegetation zones on unfertilized raised beaches on Devon
Island, Nunavut. The crest of the beach in Svoboda’s study
(1977) was dominated by Saxifraga oppositifolia, Carex
nardina, and Salix arctica. The beach slope vegetation
consisted mostly of Dryas integrifolia, with smaller
amounts of Saxifraga oppositifolia, Carex rupestris, and
Carex nardina. The foot of the beach was dominated by
Dryas integrifolia, Carex misandra, and Cassiope
tetragona. Although lichens accounted for much of the
plant cover on the crest and slope, mosses were more
dominant at the bottom of the slope (Svoboda, 1977).

There is a direct relationship between age, elevation,
and plant cover on raised beaches in the Canadian Arctic.
Young raised beaches (3000 -6000 years old) have less
vegetational cover than those 6000-9000 years old
(Svoboda, 1977). Bliss and Gold (1994) explain the distri-
bution of some High Arctic plant communities through the
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TABLE 2. Relative abundance of plant species (%) found on and adjacent to the area of anthropogenic influence at Arnaqquaksaat, Igloolik
Island, Nunavut (69°22' N, 81°47' W). Zones B—G represent the “influenced” area, while Zones A and H represent adjacent “uninfluenced”

areas. Vegetation zones are shown on Figure 3.

Plant Species Zone A Zone B

Zone C

Zone E Zone F Zone G Zone H

Cerastium alpinum
Draba sp.

Dryas integrifolia
Papaver radicatum
Pedicularis capitata
Polygonum viviparum
Salix arctica

Salix reticulata
Saxifraga caespitosa
Saxifraga cernua
Saxifraga hieracifolia
Saxifraga hirculus
Saxifraga oppositifolia
Saxifraga tricuspidata
Alopecurus alpinus
Arctagrostis latifolia
Poa hartzii

Dupontia sp. & other grasses
Other

Bryum sp.
Plagiomnium medium
Lichens
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effects of strand enrichment from marine algae and asso-
ciated cyanobacteria along the shorelines and subsequent
isostatic rebound that moved the enrichment upwards.
Although the raised beaches in Bliss and Gold’s (1994)
study are young (3000 years old), Kelly and King (1995)
found no correlation between soil development and plant
succession on older raised beaches (6790 —8920 years old)
on Devon Island, Nunavut to support that idea. The raised
beach examined in our study is young (700-1000 years
old), having a maximum elevation of 11 m above sea level
(Rowley, 1997). Successional events associated with
isostatic rebound may drive nutrients from the shore up the
slope of a raised beach, as described by Bliss and Gold
(1994). But such events could be masked by the deposition
of large amounts of organic matter during hundreds of
years of human habitation along the beach crest and by
walrus slaughtering just above the high tide mark at that
time. The upslope site of past anthropogenic fertilization
is easily distinguished from the adjacent “uninfluenced”
polar semidesert on the raised beach by its significantly
greater plant cover and soil depth (Table 1). Our study
suggests a net flow of total nitrogen downslope to the sea
at the site of past anthropogenic fertilization (Fig. 5).
Nitrogen is well known to be highly mobile in soil mois-
ture (Stevenson, 1986). Furthermore, the slope of the bank
into which the houses were built is quite steep, and the soil
is migrating downwards as aresult of solifluction (Rowley,
1997).

The gradual change in plant species composition up the
slope to the crest of raised limestone beaches in the
Canadian Arctic is also related to topographical factors,
such as drainage and exposure (Svoboda, 1977; Danks,
1981). It is possible that slight landscape undulations in

this site, which are typical of the region generally, could
have helped moisture and nutrients to accumulate, result-
ing in soil development and lush vegetation. Slight varia-
tions in topography allow for differences in snow
accumulation, which influence the timing of snowmelt,
drainage, and soil moisture (Woodley and Svoboda, 1994).
Gersper et al. (1980) and Giblin et al. (1991) reported on
the close relationships of moisture, pH, substrate quality,
and temperature, as well as meso- and microtopographical
gradients, on rates of nitrogen cycling. Nitrification and
denitrification rates were found to be higher on a drier
beach ridge-basin than on adamp sedge meadow on Devon
Island, Nunavut (Chapin, 1996). Topographic variations
can therefore result in drainage and moisture accumula-
tion gradients that affect nutrient cycling (Babb and
Whitfield, 1977) and plant communities (Muc and Bliss,
1977). Poor drainage and cool soil temperatures slow
down the microbial decomposition of organic matter,
leading to accumulation of peat and higher plant produc-
tivity (Widden, 1977; Danks, 1981). The landscape along
Igloolik Island’s coast is highly dynamic as it continues to
rise from the sea by isostatic rebound (Dredge, 1992).
By causing variation in biogeochemical processes, the
topography of Arctic landscapes is also a major factor in
determining variability of soil pH (Valentine and Binkley,
1992). Haag (1974) explained the lower pH observed in
enriched environments as resulting either from nitric acid
formation stimulated by microbial nitrification, or from
preferential uptake of ammonium ions by plants, which
leads to nitrate imbalance. The lowest measures of pH,
although only slightly acidic or neutral, were found in the
most enriched sites in this study—the upslope area of past
anthropogenic fertilization and the soils around bird rock
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TABLE 3. Spearman rank correlations for % total plant cover, total nitrogen, sodium bicarbonate-extractable phosphorus, available
potassium, available magnesium, and pH on the site of anthropogenic enrichment and adjacent areas of unaltered polar semidesert at
Arnaqquaksaat, Igloolik Island, Nunavut, Canada (69°22'N, 81°47' W).

Dist Cov CCov N P K Mg PH CN CP CK CMg CpH
Dist 1.00
Cov -0.64* 1.00
CCov -0.83* 0.93* 1.00
N -0.83%* 0.35 0.54 1.00
P -0.52 0.46 0.40 0.15 1.00
K -0.43 0.09 0.09 0.26 0.88%* 1.00
Mg -0.83%* 0.35 0.54 1.00 0.15 0.26 1.00
pH 0.70%* -0.43 -0.52 -0.94* -0.10 -0.15 -0.94* 1.00
CN -0.14 -0.23 -0.03 -0.03 -0.03 -0.09 -0.03 0.21 1.00
Cp 0.39 -0.40 -0.39 -0.13 -0.42 -0.13 -0.13 0.14 -0.65%* 1.00
CK -0.17 0.38 0.41 0.20 -0.18 -0.20 0.20 -0.22 -0.70* 0.66* 1.00
CMg 0.60%* -0.93* -0.89* -0.31 -0.33 0.09 -0.31 0.39 -0.09 0.65%* -0.12 1.00
CpH 0.56 0.02 -0.28 -0.80* 0.33 0.19 -0.80* 0.69* -0.37 0.14 -0.02 0.12 1.00

* indicates significant differences determined by Spearman Rank Correlations (p < 0.1).
(Dist = distance from Thule house entrances; Cov = % vegetative cover on the influenced area; Ccov = % vegetative cover on
uninfluenced area; N = total nitrogen (%) on the influenced area; P, K, and Mg = phosphorus, potassium, and magnesium content (mg/
L) on the influenced area; pH = soil pH on the influenced area; CN = total nitrogen (%) at the uninfluenced soil sampling sites; CP, CK,
CMg =phosphorus, potassium, and magnesium content (mg/L) at the uninfluenced soil sampling sites; CpH = soil pH at the uninfluenced

soil sampling sites).

perches. Among the other factors mentioned, humic acids
associated with organic matter may have contributed to
these lower measurements of pH (Valentine and Binkley,
1992). Moore (1986) also observed lower values of pH in
archaeological areas.

Magnesium is one of the major soluble ions in soil
(Bohn et al., 1979), especially in areas with limestone
bedrock (Millar, 1955). Fine-textured soils tend to contain
more magnesium than those with coarse particles because
less leaching occurs in finer soils (Millar, 1955). The
minor variations in topography may account for the vari-
ation we found in magnesium levels. In contrast to the
influenced area, the uninfluenced area consisted mostly of
broken limestone rocks with little soil. The highest levels
of magnesium were found in the soils around bird perch
rocks, probably reflecting continual enrichment from feces
and bones. We cannot explain the opposing trends in the
relationship of soil magnesium content to distance
downslope on the influenced versus the uninfluenced ar-
eas. In general, the magnesium requirement of plants is
low because the element is conserved during growth (Millar,
1955).

Mid- and High Arctic polar semideserts, in the
unfertilized state, have very little organic matter, as well as
low levels of nitrogen and phosphorus (Svoboda, 1977;
Henry et al., 1987; Bliss et al., 1994; Kevan et al., 1995;
Forbes, 1996). Low temperatures (Stutz and Bliss, 1975;
Svoboda, 1977) and low soil phosphorus concentrations
(Basilier, 1974; Chapin et al., 1991) result in low rates of
nitrogen fixation. Decomposition of plant and animal
remains, urine, and feces would be expected to increase
the levels of nitrogen and phosphorus in the soil (Lutz,
1951; Proudfoot, 1976; Moore, 1986; McKendrick et al.,
1980; Moore and Denton, 1988; Forbes, 1996). This may
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FIG. 5. Distance from Thule house entrances (m) versus total nitrogen content
of soil (% by dry mass) on the area of anthropogenic influence at Arnaqquaksaat,
Nunavut, Canada.

have occurred within the site of past anthropogenic enrich-
ment and in the soils around the bird rock perches. Our
results showed significantly higher nitrogen and phospho-
rus concentrations within the upslope area of past human
influence and in the animal-enriched soils than in the
surrounding unaltered polar semidesert. We did not show
a significant difference between nitrogen and phosphorus
levels of the upslope area of past anthropogenic fertiliza-
tion and those measured in the soils around the bird rock
perches, indicating similar levels of enrichment. It is
likely that since the end of human occupation in the
upslope site, ongoing mammal and bird activity has con-
tinued to contribute to the nutrient loading in localized
areas, especially at the ruined houses, where there are
many lemming burrows.

Porsild (1955) noted the importance of nutrient contri-
butions from owl perches, animal burrows, and archaeo-
logical sites to the Arctic ecosystem. Phosphorus inputs
tend to be very persistent because of the element’s low
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solubility and slow movement through the soil (Proudfoot,
1976). This may explain our finding that enriched soils at
the site of past human influence (upper area) and around
the bird perch rocks had phosphorus concentrations five to
seven times higher than those on the unaltered polar
semidesert. The effects of phosphorous on nitrogen fixa-
tion, along with topographical effects, especially in areas
of anthropogenic and natural enrichment contribute to the
development of micro-oases in an otherwise scarcely veg-
etated polar semidesert (see also Muc et al., 1994).
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