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Marine Mammals as Oceanographic Sampling Platforms

by Thomas G. Smith

THIRTY YEARS AGO, at a meeting devoted to finding
new directions for Arctic biological oceanography,
it was suggested that marine mammals might some-

day be used as “educated” oceanographic sampling plat-
forms. They are “educated” because, through millions of
years of evolution, they have developed the ability to find
and consume such prey as the arctic cod, Boreogadus
saida, a keystone (Paine, 1966) Arctic species that to this
day has largely eluded the efforts of scientists who have
tried to study it (Welch et al., 1993).

The ice-covered and ice-filled waters of the polar regions
have thwarted the attempts of oceanographers to study the
Arctic marine ecosystem. Ship-based oceanographic work
has been largely confined to the short open-water season,
with only a few sporadic and fragmented attempts in winter
to study the drift ice, ecosystems (Herdmann, 1948; McRoy
and Goering, 1974; Lønne and Gulliksen, 1989), or areas
containing polynyas (Kane, 1853; Smith, 1931; Kupetskii,
1962; Sadler, 1974; Dunbar, 1981). Valuable data on sea-
sonal and interannual variation in primary and secondary
productivity, obtained largely from long-term, shore-based
studies, have shed some light on the controlling variables,
such as temperature, ice cover, timing of the stratification of
the water column, and nutrient recirculation (Grainger,
1977, 1979; Alexander, 1980). All of these efforts have
suffered from either inadequate time series or sampling that
was restricted to a limited geographical area. They have
provided only limited regional descriptions, and these can-
not yet be used to construct an integrated picture of Arctic
marine ecosystem dynamics.

Arctic seals, whales, and polar bears have been studied
much more intensively than organisms lower down in the
marine trophic pyramid. Studies of bears and seals have
shown that large interannual changes in productivity occur
in certain regions of the Arctic (Stirling et al., 1977; Smith,
1987; Kingsley and Byers, 1998). Studies of higher verte-
brates have resulted in some interesting recent attempts to
apply the “top-down” modeling approach. Such modeling
uses the energy requirements of bears, seals, and whales to
estimate the energy flow through the ecosystem (Welch et
al., 1992) or to calculate the standing crops of upper
trophic-level components (Stirling and Øritsland, 1995;
Kingsley and Byers, 1998) of regional Arctic marine
ecosystems. To date, this appears to be the most practical

and workable means available, but the assumptions and
quantitative uncertainties at various stages in the model
make it a blunt tool. Such models still cannot be used to
identify, much less to quantify, the mechanisms causing
changes at levels lower down in the trophic pyramid.

The advent of satellite-linked VHF and other satellite-
based remote sensing has opened the doors to research on
a large geographical scale and an intensive schedule of
sampling, both essential to furthering our understanding
of Arctic marine ecosystems. Polar bears, Ursus maritimus,
and Arctic cetaceans are especially useful as “educated”
oceanographic platforms, since they can carry sizeable
instrument packages and they range widely through the
vast expanses of the oceanic environment. The behaviour
of polar bears is correlated directly with the distribution of
their chief prey species, the pagophilic ringed seal, Phoca
hispida. The migrations and diving behaviour of belugas
and narwhals reflect the distribution and density of fish,
such as arctic cod and Greenland halibut, Reinhardtius
hippoglossoides, and possibly of nektonic invertebrates,
such as squid or octopus. One of the most interesting
results from studies to date is that belugas consistently go
to certain deepwater areas to feed, in some cases traveling
great distances from the center of their summer distribu-
tion to do so. Further research on these “hot spots” of
whale feeding may help us understand the mechanisms
that promote the concentration or productivity of Arctic
fish or invertebrates. In the future, more sophisticated
mammal-carried instrument packages will allow us to
measure key physical oceanographic parameters and also
identify and enumerate the prey species consumed by the
whales and seals.

The first stage in satellite-telemetry studies of some
Arctic marine mammal species is being completed. The
seasonal movements and annual migrations of polar bears
and belugas are becoming well known for many of the
North American stocks (Garner et al., 1990; Smith and
Martin, 1994; Bethke et al., 1996; Richard et al., 1998,
2001; Dietz et al., 2001). We are studying diving behav-
iour and identifying feeding locations (Martin and Smith,
1992, 2000; Heide-Jørgensen et al., 1998, 2001; Martin et
al., 2001). For Arctic cetaceans, a large gap in our knowl-
edge concerns the location and use of winter habitat. So
far, the loss of the instruments through failure of the tag



attachments has kept us from learning about the whales’
winter habits. The narwhal, which offers the tusk as a
hard-tissue attachment site, might provide the best oppor-
tunity to keep tags on throughout the winter season.
Tagging later in the season, or capturing and holding
belugas and narwhals in sea pens for late-season release,
might also help us to obtain data on their winter distribu-
tion and behaviour.

Little is yet known about the similarities or differences
between belugas and narwhals. Although they appear to
share similar winter habitats, their summer distribution is
quite different. Both are capable divers (Martin et al., 1994),
and they appear to feed on the same fish species. Compari-
sons of their physiological capabilities and behaviour using
telemetry will increase our understanding of how they
partition their resources in the Arctic marine ecosystem.

The next step in telemetry studies of Arctic cetaceans
will be to build on existing information to gain greater
precision in enumerating the stocks, delimiting their ranges,
and evaluating the impact of harvests from areas where
stocks mix during seasonal movements. Bears, belugas,
and narwhals all cross domestic and international jurisdic-
tional boundaries, making this new information especially
pertinent to the proper management of these harvested
populations. Since rapidly increasing human populations
in the Arctic still depend on subsistence hunting for their
nourishment, there is no doubt that a more detailed scien-
tific knowledge is required to manage renewable resources
effectively.

The next major leap forward in the study of Arctic
marine mammals will be to use them to their full potential
as “educated” oceanographic sampling platforms. Few
studies have attempted to relate the distribution or behav-
iour of Arctic marine mammals to physical oceanographic
parameters. Most ship-based and land-based oceanographic
studies suffer from sampling inadequacy, especially as
related to geographical scale. For example, in the past,
biological oceanographers studying phytoplankton or sec-
ondary consumers would obtain vertical or oblique sam-
ples from the water column at relatively few sites in a large
body of water. For temperate oceanic areas, such an ap-
proach was felt to produce reasonable estimates of quantity
of phytoplankton and standing stocks of zooplankters
(Johnstone, 1908). It soon became apparent, however, that
variation—both temporal (Hart, 1942) and spatial (El-
Sayed and Mandelli, 1965)—was the norm. Also, estimat-
ing primary productivity and standing crops was particularly
difficult in the ice-covered polar regions because of sam-
pling problems. The Arctic marine environment consists of
large areas of landfast ice, extensive and recurring open-
water expanses of leads and polynyas, and vast fields of
shifting, consolidated first-year or multi-year pack ice. In
this diverse environment, localized and poorly understood
phenomena, such as ice-edge upwelling (Zakharov, 1967;
Alexander and Neibauer, 1981; Rey and Loeng, 1985),
glacier front and iceberg-generated circulation (Doake,
1976; Neshyba, 1977), and epontic algal growth (Horner

and Alexander, 1972), create patchy areas of high primary
and secondary productivity. This patchiness, in turn, con-
centrates fish and nektonic invertebrates, which attract
resident and migratory higher vertebrates. Arctic cod and
other fast-moving organisms such as cephalopods are not
only closely associated with the under-ice surface, but can
also be found, at different times, at any depth in the water
column. Arctic scientists remain puzzled by the extremely
clumped and unpredictable distribution of cod (Quast,
1974; Welch et al., 1993), which makes estimating their
standing stock virtually impossible.

One trophic level higher, the ubiquitous ringed seal can
be either absent, thinly distributed, or irregularly clumped
in its distribution over wide ocean areas, especially in the
open-water season (Harwood and Stirling, 1992). Its win-
ter distribution in the fast-ice breeding habitat is also
extremely patchy (Smith and Stirling, 1978; Hammill and
Smith, 1989).

Little can be said with accuracy about energy flow
through the Arctic marine ecosystem when it is viewed as
a whole and on a broad regional scale. Knowledge of
planktonic and benthic components is missing, and there
are no measures of the standing crops or production of
Arctic fish species (Welch et al., 1992).

It is apparent that the oceanographic conditions promot-
ing primary and secondary production in the Arctic are
localized, and they can vary greatly in magnitude from year
to year. Longer time-scale variation related to periodic
phenomena (Vibe, 1967; Imbrie and Imbrie, 1979) and the
possible additive effect of anthropogenic influences
(Abelson, 1989; Etkin, 1990; Skinner et al., 1998) can also
play a role in controlling Arctic marine ecosystem produc-
tivity. In the future, oceanographers will attempt to moni-
tor real-time changes in water masses over large distances,
using innovative techniques such as long-distance, low-
frequency sound transmission (ATOC, Acoustic Thermom-
etry of the Ocean Climate; Worcester et al., 1999). Recent
initiatives to study ocean-atmosphere boundary phenom-
ena, such as the SHEBA project (Surface Heat Budget of
the Arctic Ocean; Welch, 1998), all aim at developing
some degree of ecosystem-level predictive capability. This
predictive capability is widely held to be one of the primary
goals of scientific inquiry (Platt, 1964) and is considered
the basis for risk assessment and management (Levin,
1988). Such integrated science projects, combined with
input from the monitoring of “educated” sampling plat-
forms such as bears, seals, and whales, which can precisely
locate and describe hidden, patchy, and changing areas of
dense plankton and fish aggregations, will greatly advance
our understanding of the structure of Arctic marine ecosys-
tems and the factors that control them.
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