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The Effects of Examinee Motivation on
Multiple-Choice Item Parameter Estimates

The purpose of this study was to examine the effects of false assumption regarding the
motivation of examinees on item calibration and test construction. A simulation study was
conducted using data generated using two models of item responses (the 3-parameter logistic
item response model alone, and in combination with Wise's Examinee Persistence model
(1996a)). Items were calibrated using a Bayesian method. Results clearly document the effect
of low motivation on item parameter estimates. For the conditions studied, the item paramet-
er estimates based on responses from poorly motivated examinees were biased and more
variable than estimates based on responses from examinees who behaved according to the
three-parameter logistic model.

Low motivation test-taking behaviors may occur when the examinee is aware
that the results from portions of the test (or the complete test) have no personal
consequence. This circumstance may arise when the purpose of the test admin-
istration is to pilot test items or to establish group-level scores, as in statewide
or provincial assessment. A student with low motivation may not persist in
applying his or her abilities when responding to test items, opting instead to
guess, omit a large number of item responses, or quit entirely. This examinee’s
response pattern is aberrant because performance on the inconsequential items
does not reflect his or her ability.

Earlier research in the area of test-taker motivation suggests that item and
test characteristics are related to the motivation of examinees. Stocking, Steffen,
and Eignor (2001) studied the responses of more than 33,000 college-level
examinees to an operational Graduate Record Examination (Analytical) and
found that the proportions of examinees who randomly guess (defined as
spending less than 10 seconds per item) or omit the response entirely increase
as item position increases (i.e., as the test goes on). They also observed that the
proportions of examinees who guess or omit are higher for items that are part
of a set of items with a common stimulus than for discrete items. They con-
cluded that item position and item format influence test-taking behaviors. Item
format effects were also observed by DeMars (2000), who studied 11,930 high
school students writing the Michigan High School Proficiency Test. She found
that the average score of students was higher when the stakes were high
(diploma endorsement) than when stakes were low (pilot test), but the dif-
ference was larger for constructed response than multiple-choice items, sug-
gesting that item format may interact with motivation to perform. Wolf, Smith,
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and Birnbaum (1995) considered the responses of 301 high school students to a
New Jersey state graduation test in math. They studied item difficulty, task
exertion (operationally defined as a rating provided by six experienced math
educators), and item position as predictors of differential item functioning
(DIF) between the groups of examinees in high- and low-stakes circumstances.
They found DIF between the low- and high-stakes groups was predicted by
item difficulty and task exertion. The correlation between item difficulty and
task exertion was .40. Interestingly, DIF between low- and high-stakes groups
was not predicted by item position. They note, however, that item position in
this test did not vary and that the test length was only 30 items long, perhaps
too short to produce fatigue. Wolf and Smith (1995) observed 158 college
students on both a high-stakes and a low-stakes class test and collected self-
report information regarding student motivation. Examinees reported higher
levels of motivation for the high-stakes test. Also, most examinees had slightly
higher scores on the high-stakes test, although one third of them had higher
scores on low-stakes test.

Research has also delved into the relationship between examinee charac-
teristics and low motivation test-taking behaviors. Stocking et al. (2001) found
that the proportion of examinees who randomly guessed or omitted items
increased as ability decreased. This effect was also noted by Wise (1996a,
1996b), and Wolf and Smith (1995). Other examinee characteristics such as
gender and ethnicity appear to be less influential in determining test-taking
motivation than ability (DeMars, 2000).

Item Response Models

Item response models describe the relationship between an examinee and the
items on a test. Recent research has focused on the identification of unlikely
response patterns in relation to item response models (Kalohn & Spray, 1999;
Nering, 1997; van Krimpen-Stoop & Meijer, 1999). Many types of item response
models have been developed (van der Linden & Hambleton, 1997). In this
study, attention is focused on a three-parameter logistic item response model
for dichotomously scored data.

The Three-Parameter Logistic Item Response Model
The three-parameter logistic (3PL) item response model (IRM) can be defined
as
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where

e is the base of the system of natural logarithms,

i indexes test item (i=1, 2, 3,..., n),

j indexes examinee (j=1, 2, 3,..., N),

a is the discrimination parameter for item i and is proportional to the slope

of the item response function at the point 8i=b;,

is the difficulty parameter for item i, the point on the ability scale at

which an examinee has (1+c)/2 probability of answering item i correctly,

¢ is the lower asymptote parameter of the item response function for item
iand represents the probability of an examinee with low ability correctly
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answering the item (sometimes referred to as the pseudo-guessing para-
meter),

6, represents the ability of examinee j,

P(6) is the probability of examinee j with ability 6 answering item i correctly,
and

D is a scaling factor; when set to 1.702, the parameter estimates for the
logistic and the normal ogive models are comparable.

In order to obtain estimates of the item parameters 4, b, and ¢, an item
calibration study is conducted. In general, calibration studies involve identify-
ing a suitable number of examinees, administering the test items, and using the
resulting item responses to estimate item parameters. ltem parameter estimates
are then reviewed, and those that are consistent with the goal of the test are
selected for subsequent operational test administrations to obtain ability es-
timates of future examinees.

It is generally assumed that the group of examinees used to calibrate test
items is composed of normal responders (Drasgow, Levine, & Williams, 1985;
Yi, 1998), that is, they do not display aberrant response behaviors. Although
the assumption of a normal calibration group is mentioned in the literature,
few studies have focused on the effect of its violation. Violation of this assump-
tion, however, may result in errors in item parameter estimates.

Errors in item parameter estimates may have serious implications for test
construction. For example, an overestimation of the item discrimination para-
meter 4 results in errors in overestimation of the item information (Hambleton
& Jones, 1994; Hambleton, Jones, & Rogers, 1993; Tsutakawa & Johnson, 1990;
van der Linden & Glas, 2000)—defined as the extent to which the item deter-
mines the value of the ability being measured (McDonald, 1999). Information is
related to the precision with which ability is estimated, such that the greater the
information there is at a given 6, the more precise the measurement will be at 6.
It has various applications in the measurement field, such as in describing
items, selecting items for test construction, assessing the precision of measure-
ment, and comparing items. In the case of the 3PL IRT model the item informa-
tion function is expressed,

(1.7)%aX1 -c)
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where the terms are defined as in Equation 1. From Equation 2 one can observe
the relationship between the item parameters and item information. Informa-
tion is higher when the b value is closer to 8, when the a parameter is larger, and
as c approaches zero (Hambleton, Swaminathan, & Rogers, 1991). Because item
information has various applications in the measurement field, opportunities
abound to misuse items when there are errors in the item information es-
timates.

Model of Low Motivation Test-Taking Behavior
Models of low motivation test-taking behaviors have been proposed (Stocking
etal., 2001; Wise, 1996a, 1996b). Here I focus on Wise’s model because it was the
most widely applied at the time of this publication.
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Wise’s (1996a, 1996b) Examinee Persistence (EP) model is a three-state
Markov process—attentive, random guessing, or nonresponse—where all ex-
aminees are initially assumed to be in the attentive state. After each item, there
is some probability that the examinee will transition from an attentive state to
either a random guessing state or a nonresponse state. Examinees in the ran-
dom guessing state also have some probability of transitioning to the non-
response state. The nonresponse state is absorbing.

In Wise’s (1996a) EP model transition probabilities were modeled as a
logistic function of effort, operationally defined as the difference between item
difficulty and examinee ability. The transition probabilities were defined

1
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where

ri is the probability that examinee j will transition from the attentive to the
random guessing states after item i,

R;  istherandom variable denoting the item after which examinee j began to
respond randomly,

A;  isalogical variable denoting the event that examinee j responded atten-
tively to item i,

r, is the slope of the logistic function that gives the probability ri;,

Ty is the intercept of the logistic function that gives the probability rij,

qg;  is the probability that examinee j transitions from either the attentive or
the random guessing state to omitting after item i,

Q;  denotes the number of items reached by examinee j,

qa is the slope of the logistic function that gives the probability gij, and

9 is the intercept of the logistic function that gives the probability .

The transition probability matrix described by Wise (1996a) was therefore
as shown in Table 1.

In order to provide an interpretation of the various probabilities presented
above, consider the following example. For transition probability parameters
r,=047,r,= 554, g, = -0.10, and g, = 5.66, the proportion of examinees in the
attentive state after 50 items may be calculated by (1 - 7, - g,)*. For an easy
50-item test (i.e., b — 6= -4 throughout the test), 75% of examinees remain in an
attentive state. When the test is difficult (i.e., b — 6 = 4), 25% of examinees
remain in an attentive state.

To assess this model, Wise (1996a) observed 20,025 army recruits who
responded to items (divided into 6 sets) on a low-stakes, paper-and-pencil
administration of the United States Army’s Computerized Adaptive Screening
Test (CAST) word knowledge (WK) and arithmetic reasoning (AR) subtests.
Each test form was administered in forward and reverse order to randomly
equivalent groups of examinees. He investigated whether the EP model fitted
these data better than a model that did not include transitions to random
responding, whether transition probabilities varied by item type, by examinee
ability, or an interaction of the two. Results indicated that the EP model led to
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Table 1
Transition Probability Matrix
(from)
attentive random-guess nonresponse
1-ri—q; 0 0 attentive (to)
ri 1-q; 0 random-guess
gj qj 1 nonresponse

significantly improved fit in comparison with the traditional 3PL IRT model.
Transition probabilities varied as a function of item type (arithmetic reasoning
versus word knowledge), with items that required more effort (i.e., arithmetic
reasoning), resulting in higher probabilities of transition. Transition probabil-
ities were higher following more difficult items, especially for low-ability ex-
aminees. More detailed accounts of the theory and applications of the EP
model are offered by Wise (1996a, 1996b).

Purpose of the Study
The purpose of this study was to provide an example of the potential effect of
false assumptions regarding the motivation levels of examinees in low-stakes
testing environments on item calibration.

Method
Examinee and Item Characteristics
Simulated ability values of examinees in the calibration group were drawn
from an approximately normal distribution with a mean of 0 and a standard
deviation of 1.

The item parameters used in this study were those of the 3PL IRT model for
dichotomously scored data. For the purposes of this study, the item parameter
values used to generate response vectors for simulated examinees were con-
stant. The item parameter values for discrimination, difficulty, and pseudo-
guessing werea = 1.5, b = 0, and ¢ = .2 respectively. Although it is unlikely that
real-life test items would have identical characteristics, this method was used
to isolate the variability introduced by low motivation test-taking behaviors.
Any changes in the item parameter estimates were clearly attributable to
manipulation of the independent variables.

Design: 3x2x50 with 100 Replications

Three levels of examinee motivation. Three levels of examinee motivation were
examined in this study. The first level was defined by attentive examinees who
responded to all items according the 3PL IRT model.

The second level of examinee motivation reflected low-motivation test-
taker behavior based on the EP model proposed by Wise (1996a), with transi-
tion probability parameters r, = 0.47, r, = 5.54, g, = -0.10, and g, = 5.66. Note that
these values were the mean of the estimated transition probability parameters
. based on empirical research on a fixed-item, paper-and-pencil administration
of the CAST/AR test (Wise, 1996a). These transition probability parameters
were constant over items.

The third level of examinee motivation reflected very low-motivation test-
taker behavior based on the EP model proposed by Wise (1996a), with transi-
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tion probability parameters 7, = 0.59, r, = 5.04, g, = -0.15, and g, = 5.54. Note that
these values were the largest absolute values of the slopes from the estimated
transition probability parameters based on empirical research by Wise. These
transition probability parameters were constant over items.

It was assumed that the artificial test was not speeded. This was done to
isolate the effect of examinee persistence, with transition probabilities that
were dependent on the difference between the examinee’s ability and the
difficulty of the item, and not on time taken or time remaining.

Two levels of sample size. The number of simulated examinees used in this
investigation were n=500 and n=2,000. The n=500 condition reflected the mini-
mum number of examinees required for calibration of items for a 3PL model
(Hulin, Lissak, & Drasgow, 1982). The n=2,000 condition is generally con-
sidered to be a large sample from which to obtain satisfactory item parameter
estimates (Lord, 1980) and has been used in studies that have examined the
influence of errors in item parameter estimates on item information functions
and test construction (Hambleton & Jones, 1994; Hambleton et al., 1993; van der
Linden & Glas, 2000).

Fifty item positions. There were 50 item positions in the artificial test. This test
length was selected to simulate the number of items an examinee may respond
to during a calibration study. Items with identical characteristics were ad-
ministered to simulated examinees in every position in the 50-item test.

Replications. In this design there was the potential for sampling error as-
sociated with the sampling of examinees. Therefore, there were 100 samples of
examinees from a population for each condition. This resulted in 100 within-
condition observations.

Procedure

Data Generation Method

Item responses for examinees were generated using the following procedure.
All examinees started the test in an attentive state.

Step 1. Generate an item response for an attentive examinee. To do this, the
item response was coded as 1 (correct) if a random number, r, drawn from
U(0,1) is less than or equal to P(0), and as 0 (incorrect) if r>P(6).

Step 2. Determine if the examinee transitions to a random guessing state. To
do this, draw a random number from U(0,1) and determine if it is larger than Tie
defined in Equation 1. If the random number is larger than T then the ex-
aminee does not transition to a random state. Go to Step 3. If the random
number is less than 7, , then the examinee transitions to a random state. Go to
Step 4.

Step 3. Determine if the examinee transitions to a nonresponse state. To do
this, draw a random number from U(0,1) and determine if it is larger than g as
defined in Equation 8. If the random number is larger than g;, then the ex-
aminee does not transition to a nonresponse state. If the random number is less
than g, then the examinee does transition to a nonresponse state.

Step 4. Administer next item.

Step 5. If the examinee was in an attentive state, go to Step 1. If the examinee
was in a random guessing state, go to Step 6. If the examinee was in a non-
response state, go to Step 7.
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Step 6. Determine if the examinee randomly guessed the correct answer. To
do this, draw a random number from U(0,1) and determine if it is larger than c,.
If the random number is larger than ¢, then the item score is 0, reflecting an
incorrect response. If the random number is equal to or less than ¢, then the
item score is 1, reflecting a correct response. Go to Step 3.

Step 7. The item score is 0 reflecting an incorrect response. Go to Step 4.

Item Parameter Estimation Method

Item parameter estimates for a 3PL IRM were obtained using a marginal
maximum likelihood estimation method with an expectation/maximization
algorithm (MMLE/EM) approach with Bayesian priors on item parameters
using the software BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996).
Item priors were the default values for the BILOG-MG software as follows: a
was distributed as lognormal with a mean of 1.13 and a standard deviation of
0.6 (Baker, 1992), b was distributed as normal with a mean of 0 and standard
deviation of 2, and ¢ was distributed as beta with parameters ALPHA=5 and
BETA=17 (Swaminathan & Gifford, 1986).

Analysis

Item parameter estimates were averaged over replications and were examined
graphically using scatterplots, as a function of sample size, examinee motiva-
tion level, and item position.

Results
Scatterplots of the mean item parameter estimates (over 100 replications) for an
item with true parameters 4 = 1.5, b = 0 and ¢ = .2 are depicted in Figure 1
(n=500) and Figure 2 (n=2,000). Mean item parameter estimates were plotted by
examinee motivation and item position.

In the attentive examinee calibration condition, item parameter estimates
clustered around their true values, with the exception of the item discrimina-
tion parameter. Item discrimination tended to be overestimated (maximum
bias of about 0.13) in the attentive examinee condition when the calibration
group size was small n=500). This effect was not observed when calibration
group size was 2,000 examinees,

Item parameter estimates based on item responses from examinees in the
low-motivation calibration conditions were biased and more variable than
those based on the responses of examinees from the attentive group. Item
discrimination parameters tended to be underestimated for the low motivation
conditions (by as much as 0.4), for items in positions 1 to 30 for both sample
sizes. After the 30th item position in the test, the 4 parameter tended to be
overestimated for n=500 (by as much as 0.25), but remained underestimated for
n=2,000. Further, the variance in the mean a parameter estimates were in-
fluenced by examinee low motivation. Although the standard error of the
mean g-estimates appeared to be smaller for the n=2,000 condition than the
n=500 condition, both low motivation conditions tended to have more varia-
tion in the a estimates compared with the attentive examinee calibration condi-
tion.

The b parameter estimates also appeared to be biased and more variable as
a result of the low motivation of examinees. In general, item difficulty paramet-
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Figure 1. Scatterplots of mean item parameter estimates (over 100 replications) for an item
with true parameters a = 1.5, b = 0 and c = .2, calibration group size n=500, by examinee
motivation and item position. Note. The numbers in each graph represent the item position of

ers tended to be overestimated for both low motivation conditions (by as much

as 0.45) as item position increased, especially for the small sample size.
There was a slight overestimation of the pseudo-guessing parameters for
items that were positioned early in the test (positions 1 to 8, by as much as .1)

and underestimation for items that were positioned toward the end of the test
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Figure 2. Scatterplots of mean item parameter estimates (over 100 replications) for an item
with true parameters a = 1.5, b = 0 and ¢ = .2, calibration group size n=2,000, by examinee
motivation and item position.

(positions 9 to 50, by as much as .15) for the very low motivation calibration
condition).

For the low motivation calibration conditions, item parameter estimates
appeared to be correlated to each other in a nonlinear relationship.
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Discussion
Low motivation of examinees in a calibration study results in errors in item
parameter estimates, especially when the calibration group is small (n=500).
Although errors are smaller for the larger calibration group size, the item
parameter estimates are not recovered to their true values.

An interesting finding of this study was the correlation between the item
parameter estimates as a result of low examinee motivation. This may be a
result of poor fit of the 3PL IRT model to the low motivation examinee re-
sponses. This also may be related to the potential introduction of local item
dependencies as a result of the random guessing and omitting behaviors dis-
played by low motivation examinees, especially toward the end of the test
where random guessing or quitting was more prevalent. In the low motivation
conditions, examinee abilities as specified by the 3PL IRT model were not the
only factors influencing examinees’ responses to test items. Earlier research has
shown that violations to the IRT assumption of local item independence result
in bias in item difficulty estimates and item discrimination estimates, overes-
timation of the precision of examinee scores, and overestimation of test
reliability and test information (Oshima, 1994; Sireci, Thissen, & Wainer, 1991;
Thissen, Steinberg, & Mooney, 1989; Yen, 1993; Zenisky, Hambleton, & Sireci,
2002). This may lead to inaccurate inferences regarding examinee ability that
may result in a higher chance of misclassification when making pass/fail
decisions based on test results.

Another interesting finding of this study was that after the 30th item posi-
tion in the test, the 4 parameter was overestimated for n=500 for the very low
motivation condition, but remained underestimated for n=2,000. This effect
may have been caused by items at the end of the test having few (if any) correct
responses, because the transition probability parameters used in the very low
motivation condition represented extreme values based on empirical research.
As a result, the Bayesian approach to the estimation of item parameters may
have influenced the values toward the end of the test because a prior distribu-
tion was defined for the a parameter. The contribution of the prior distribution
of a depended on the extremity of the estimated value. Greater shrinkage
occurred when the estimate and the mean of the prior distribution were sub-
stantially different. The prior distribution tended to restrain estimates from
assuming unlikely values, as defined by the prior. This effect was reduced for
the larger sample size, where there was a higher likelihood of examinees with
high ability being included in the sample who remained attentive throughout
the test.

Errors in the item parameter estimates have implications for test develop-
ment organizations. For example, when the discrimination parameter is under-
estimated, an item appears to be less informative than it truly is at a given
ability level. Depending on the purpose of the test and the item selection
criteria (e.g., maximum information selection criteria), this item may be under-
used or dropped entirely. When several items are affected in this way, the cost
of developing and testing items is increased, and field-test results may not
accurately describe the appropriateness of the item given the purpose of the
test. For the testing organization responsible for the test, underestimation of
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item discrimination may result in an inefficient use of resources required to
construct and administer the test items.

The results of this study also have implications for future test-takers. Items
that appear to be more difficult than they really are may be misused when
constructing an operational test. For example, when items with overestimated
difficulty parameters are administered to a high-motivation group of ex-
amines—as may occur in a high-stakes operational test administration—their
ability estimates will be overestimated because the examinees appeared to
answer difficult questions correctly. In fact, these items are less difficult than
they appear.

Low motivation response behaviors in the calibration group may also have
implications for the development of a computerized adaptive test (CAT). For
example, in a CAT where a maximum information strategy is employed as the
item selection algorithm, items with underestimated information may not be
selected because they do not appear to improve precision of the ability es-
timate. Finally, errors in item parameter estimates can cause errors in the
location of the item information curve, shifting it to the right. Each of these
errors in the item information function may result in an increase in the error
associated with examinee ability estimates, which may require the examinee to
respond to more questions than necessary in order to achieve a given standard
error of the ability estimate.

Conclusion

This study illustrates the potential effect of false assumptions regarding the
measurement model used to describe the relationship between examinees and
test items. When data that reflected low motivation test-taking behaviors were
calibrated using the 3PL IRM, item parameter estimates were biased and more
variable than when the calibration group was composed of normal (attentive)
examinees. The direction and magnitude of the biases depended on degree of
motivation, calibration group size, and item position within the test.

A systematic review of the effect of examinee motivation on item calibration
(and test construction) is needed. Potential veins of research include: the rela-
tionship between examinee motivation and item calibration for commonly
used item response models, the development of reliable tools for the identifica-
tion of low motivation examinees in a calibration group (perhaps making use
of the item position effect within a test), and robust estimation of item paramet-
er estimates.

Limitations of the Study

Items with identical parameters were used in this study. Thus the generaliz-
ability of these results is restricted to an item pool with similar characteristics.
Other item parameters typically found in large-scale assessments that employ
the 3PL IRT model need to be considered. Item parameter estimation errors
should be explored as a function of selected a and b parameters. In a future
study, it may be interesting to explore the effect of alternate positioning of a
given item within a test of items with varying characteristics. Perhaps this may
serve as a starting point for the development of an index of low examinee
motivation.
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The difference between the probability of a correct answer given a random
guessing examinee state in Wise’s (1996a) model and the ¢ parameter defined
in the 3PL IRM is unclear. Usually the ¢ parameter is very near the inverse of
the number of options, suggesting random guessing behavior of the examinee.
It may be less than the inverse of the number of options, however, when some
distracters are particularly attractive to low-ability examinees. It may also be
higher in value than the inverse of the number of options when some distrac-
ters can be dismissed by low-ability examinees. Thus the c parameter assumes
an attentive state, where low-ability examinees are engaged with the item.
Only when low-ability examinees are attentive can the ¢ parameter reflect
test-taker behavior as described above. When the low-ability examinee is in a
random guessing state, he or she is no longer engaged with the test items and
therefore his or her probability of a correct answer is the inverse of the number
of options.

In this study, omitted data were scored as incorrect. This is the harshest
possible treatment of missing data and perhaps resulted in more extreme item
parameter estimates than if another treatment had been used. In this case, the
accuracy of the item parameter estimates decreased as the number of omissions
increased. Other treatments of omissions (De Ayala, Plake, & Impara, 2001)
may be considered in a future study.
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