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Total Information in Multivariate Data from
Dual Scaling Perspectives

It is an established matter that the total information in multivariate data is defined as the sum
of eigenvalues of the variance-covariance matrix. In this article I challenge this time-honored
tradition and look at another definition of the total information in data from a dual scaling
perspective. This proposal is a step toward unifying the concept of information for both
discrete and continuous variables.

Consider a continuous variable. The information of the variable is defined as its
variance. Suppose we add another variable so that we can express the location
of each respondent in a two-dimensional graph with two coordinates. Assum-
ing that both variables are centered, the variance of data points in two dimen-
sions is the variance of those distances of points from the origin, and it is not
difficult to see that the variance is the sum of the variances of individual
variables following the Pythagoras theorem. It is not difficult to see either that
the same is true even when the two axes are rotated to the principal axes, in
which case the sum of the variances becomes the sum of the eigenvalues. This
discussion can be extended to any number of variables, hence the traditional
definition of the total information in multivariate data.

Nishisato (2002), however, showed that the above definition is limited using
the following example. Consider five standardized variables. Then the five
eigenvalues under two extreme cases are:

1. Perfect correlation: A, =5,A, =A; =X, =A;=0
2. Perfect independence: A, =4, =A; =\, =As=1
In both cases, the sum of eigenvalues is five, which is the total information in
the data. The objections to this traditional definition come from the common
sense (a) that if all five variables are perfectly correlated, only one variable is
needed to explain the data because the other four variables are totally redun-
dant, and (b) that if all the variables are uncorrelated, one needs all of them to
explain the data. His conclusion, therefore, is that the data set of perfectly
correlated variables contains much less information than that of totally uncor-
related variables.

The above view was tied to research on dual scaling of discretized con-
tinuous variables (Eouanzoui, in press; Nishisato, 2000, 2002), which aims for a
unified treatment of both discrete and continuous multivariate data.
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Dual Scaling
Principal component analysis (PCA) is carried out with continuous variables,
say Z, using singular-value decomposition (SVD, Beltrami, 1873; Eckart &
Young, 1936; Jordan, 1874; Schmidt, 1907).

K
Z=YAX ,orz;=Y MNVYyX; , (1)
k=1

where y, and x; are singular weights of component k of row i and column j
respectively and A, is the singular value of component k.

When each continuous variable is categorized and a set of categorized
variables is subjected to PCA, it is what we call dual scaling (DS). This small
step in the procedure is a giant step in its implication for data analysis. Instead
of considering cross-products of variables, it now becomes considering cross-
products of functions of variables, a jump from the Hilbert space to the Sobolev
space.

Consider multiple-choice data with several response options per question.
The main object of DS (Nishisato, 1980, 1994) can be stated in many ways, one
of which is to determine option weights so as to maximize the average inter-
item correlation. The task is also called principal component analysis of catego-
rical variables (Torgerson, 1958), multiple correspondence analysis (Benzécri et
al., 1973; Greenacre, 1984; Lebart, Morineau, & Tabard, 1977), homogeneity
analysis (Gifi, 1990), and many other names.

To simplify our discussion, let us consider three response options per ques-
tion. Then the possible response patterns to a question are (1, 0, 0), (0, 1, 0), and
(0, 0, 1), where 1 indicates the choice of the option and 0 a non-choice. Because
three columns of the response patterns are mutually exclusive, we need a
three-dimensional space for each variable, and responses to an item from
subjects fall at one of these three points and nowhere else. When data are
collected, therefore, the locations of the three coordinates can be determined by
specifying the scaling unit. No matter what scaling unit one may choose, it is
clear that an item with three response options yields only three distinct points,
and they can be mapped in two-dimensional space. So long as these points are
distinct, we need a plane (two axes) to accommodate the points of each item. If
two multiple-choice items with three response options each are perfectly corre-
lated, however, the two triangles converge into a single triangle, and the data
can be mapped in two-dimensional space, no longer in four-dimensional space,
nor in one-dimensional space as one might expect from two perfectly corre-
lated continuous variables. This is a key difference between categorical and
continuous variables.

Data in Multidimensional Space
Suppose variable p has coordinates (xpl, xpz,"-,xp,() in K-dimensional space and
the configuration is centered. In practice, however, we often express data in the
space of dimensionality smaller than K, say g. Then both the squared distance
- from the origin to the coordinates in g-dimensional space (g < K) and the
squared distance between variables p and g generally increase as the dimen-
sionality g increases toward K. For example, the distance between points p and
q as viewed in one-dimensional space would either remain the same or increase
if we looked at them in two-dimensional space or three-dimensional space.
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Any additional move of a point due to another dimension can never reduce the
distance from the other point or the distance from the origin.

Thus we can now state that the triangle created by connecting the locations
of the three response options of an item in two-dimensional space increases its
size steadily as the dimensionality of the space increases. In the total space,
therefore, the triangle of a three-category variable becomes the largest, the area
of which can be regarded as proportional to the total information of the vari-
able (Nishisato, 2002, 2003). In these papers Nishisato stated a remarkable
aspect of its geometry as follows.

If the frequencies of the three options are equal, then the variable forms a
regular triangle in the total space, that is, a regular simplex with the center at
the origin. This regular simplex has the property that no matter how one may
rotate the triangle, the contributions of the three vertices to the two axes are
equal, that is, 50% each. Furthermore, he stated that even when the triangle is
not regular (i.e., the three option frequencies are different) the contributions of
the three vertices to two axes remain the same and equal to 50% no matter how
the axes are rotated. One can prove this remarkable property quite easily by the
structure of a 3-by-3 diagonal contingency table, the eigenvalues of which are
A, =M, =1, irrespective of the three frequencies in the main diagonal positions.
This conclusion is contingent on the fact that we use the chi-square metric
(Lebart, Morineau, & Warwick, 1984; Nishisato & Clavel, 2003) in DS. These
observations lead to the conclusion that any variable with three response
options requires two dimensions and that the contributions of the three points
on the two dimensions are equal, and equal to 50%. When the number of
response options increases to m, the variable in the total space forms the (m o
1)-dimensional polyhedron, of which each contribution to the total space is
exactly 100/ (m; - 1)%.

Research on discretization of continuous variables for use by DS (Eouan-
zoui, in press; Nishisato, 2000, 2002, 2003) is motivated by the idea that the
information contained in continuous variables is much more than what is
assessed by the sum of the eigenvalues of the variance-covariance matrix. For
example, principal component analysis of continuous variables captures only
linear relations among variables, which is reflected on the sum of eigenvalues;
but the data must contain nonlinear relations as well. If we consider continuous
variables as categorical variables with as many categories as the number of
distinct values and subject the data to DS, then we will be able to capture not
only linear relations, but also nonlinear relations. The amount of total informa-
tion is then the sum of the eigenvalues of the variance-covariance matrix plus
alpha, and this alpha is likely to be much larger than the sum of the eigen-
values. In this case we can regard the volume of a polyhedron created by the
number of categories (no longer three, hence no longer a triangle) as propor-
tional to the total information of the variable.

If one is afraid of the phenomenon of overquantification, rest assured that it
is an unwarranted fear. If two variables are distributed as bivariate normal, the
correlation between the variable, say p*;, is an upper bound of the product-mo-
ment correlation calculated from the corresponding discretized variables, say
r”,.k , that is,

P2 T - @)

246




Information in Multivariate Data

Joint Distribution of Information

Consider the difference between PCA and DS once more. In terms of geometry,
each continuous variable can be expressed as an axis along which all variates of
the variable are distributed. To simplify our discussion we use the principal
coordinates for the data space, that is, the principal hyperspace. When all the
variables are perfectly correlated to one another, we need only the first prin-
cipal axis to represent the data; when all n variables are totally uncorrelated, we
need 7 axes to represent the data.

Consider the same extremes with categorical data with three categories
(options) per variable. When all variables are perfectly correlated to one anoth-
er, we need two axes (dimensions) to represent the common triangle; when all
n variables are totally uncorrelated, the first variable occupies, for example, the
first two dimensions, the second variable dimensions 3 and 4, the third variable
dimensions 5 and 6, and so on, sc that all n triangles are disjoint, that is, they
have no overlapping parts, thus requiring 2n dimensions. Adopting the defini-
tion of information being proportional to the area created by connecting all
vertices of the data points, we can state without ambiguity that the total
information in multivariate data depends on the covariation (correlation)
among the variables.

Contributions of Components to Total Information
To consider the amount of information in data, it is convenient to redefine the
contribution of a component to the total information separately for discrete and
continuous variables.

Discrete Case: Dual Scaling

DS determines option weights so as to maximize the average inter-item correla-
tion. Its objective function for optimization is typically the correlation ratio n?
which is equal to the mean of the squared item-total (component) correlation
coefficients

n rz
m= 2 3)
j=1

The correlation ratio is the eigenvalue for DS. Assuming that the number of
respondents is larger than the total number of options (say m) minus the
number of questions 1, the sum of all the eigenvalues, that is, the traditional
total information in the data is given (Nishisato, 1994) by

K
dn=m-1, @)
k=1
where K = m — n and m is the average number of options. It is also known

(Nishisato, 1994) that the sum of squared item-total correlations of variable j
over all K components is equal to the number of options minus 1, that is,

K
erzmk): m—1, ®)

k=1

where m; is the number of response options of item j.
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The sum of the eigenvalues depends on what objective function is used.
Therefore, we would like to propose the use of a statistic that is independent of
the objective function. Specifically, we define the total information as the sum
of squared item-total correlations. In our case, for solution (component) k,

Z = NMe=TGinf) , (6)
j=1
and for the total space,

n K

Y > = n@m—1)=T(nf) . @)
j=1 k=1

Let us look at three distributions of 72, for three multiple-choice items with
three options each: (a) when all items are perfectly correlated; (b) a general
case; and (c) when all items are uncorrelated. We can see that the item total
contribution of 2 is distributed differently in the three cases. (a) The three
triangles merge completely when all inter-item correlations are perfect; (b)
three triangles float in the six-dimensional space with different orientations;
and (c) each of the triangles occupies two dimensions different from the others
(Table 1).

Continuous Case: Principal Component Analysis
We typically use A for the eigenvalue. Suppose we standardize the variables
and consider principal component analysis of the correlation matrix. Then

A=2 = T'Gnfy) - ®)
j=1

When we sum the squared item-total correlation of one variable over all pos-

sible components, we obtain

K
2rw=1, ©)
k=1

where K = n. For the total space, we obtain

n K n
Y Y Aw= 2 h=n=T(nf . (10)
j=1 k=1 k=1

Using three continuous variables, we can consider the distribution of 72,
under the same three cases as for the categorical cases discussed above. Note
when these variables are perfectly correlated only one dimension is needed for
the data (Table 2).

A New Measure of Total Information

We now move ahead with our goal of proposing a statistic for total information
contained in multivariate data, continuous or discrete. Although it is not clear-
ly stated, we should note that the traditional definition of total information is
based on the case of independent variables. For example, when we have five
multiple-choice items with three response options per item, we state that we
need 10 dimensions to accommodate the data. But it is made clear above that
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Table 1
Squared Item-Total Correlation: r%,,
Categorical Variables with Three Options per Item and DS

Dimension (Component) 1 2 3 4 5 6 Sum

Perfect inter-item correlation

Item 1 1 1 0 0 0 0 2
Item 2 1 1 0 0 0 0 2
Item 3 1 1 0 0 0 0 2
Any values of correlation

Item 1 a b c d e f 2
ltem 2 g h i j k m 2
Item 3 n o] p q r s 2
Zero inter-item correlation

Item 1 1 1 0 0 0 0 2
Iltem 2 0 0 1 1 0 0 2
Item 3 0 0 0 0 1 1 2

this argument is based on the case that each variable occupies two-dimensional
space independently of the other variables, hence 2 x 5 = 10 dimensions; if the
variables are perfectly correlated to one another, we need only two dimensions.
Thus we should note that the cloud of data points changes its volume depend-
ing on the inter-item correlations.

The statistic T*(inf) discussed above is independent of correlation among
variables, and as such it contradicts the purpose of this article. We propose the
following measure of total information for both discrete and continuous vari-
ables:

T(inf) = T"(inf) — zfu + z ra— o+ (CD) Mg i (11)
i<j i<j<k
where
N
21i 29i Z3j -+ Zp
rlB"‘p= Z —N*‘% (12)

i=1
z; is the standardized score of subject i on item j, and N is the number of
subjects.

The new statistic can be interpreted as a concept corresponding to the union
of sets in set theory and the joint entropy in information theory. As is clear from
set theory, the union is the sum of the unique parts of single sets, unique parts
of a pair of sets, and so on. In set theory and information theory, the traditional
total information corresponds to the sum of sets and the sum of entropies of
individual variables, respectively.

The new measure of information attains its minimum when all variables are
perfectly correlated to one another and attains its maximum when all variables
are totally uncorrelated. If continuous variables are subjected to PCA as is
usually done, the analysis captures only linear relations. Then,
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Table 2
Squared Item-Total Correlation: r %,
Continuous Variables and Linear Analysis

Dimension (Component) 1 2 3 Sum

Perfect inter-item correlation

Item 1 1 0 0 1
ltem 2 1 0 0 1
Iltem 3 1 0 0 1
Any values of correlationl!

tem 1 a b c 1
Item 2 d e f 1
Iltem 3 g h i 1
Zero inter-item correlation

Item 1 1 0 0 1
Item 2 0 1 0 1
Item 3 0 0 1 1

1. Continuous Variables for Linear Analysis
1<T(infy<n (13)

When DS is carried out with categorical data or discretized continuous vari-
ables, then
2. Discrete Variables

nM-1)< T(infy<n( Yy, m-1), (14)
j=1

where M is the smallest value of m, j=12n and m; is the number of

categories of variable j.

Discussion

It may look strange that n continuous variables have less information than n
categorical variables. At the present moment this is so unless a nonlinear model
is used for analysis of continuous variables. The above bounds for continuous
variables apply only to linear analysis. As briefly mentioned above, however,
the aim of the current research is to assess the total amount of information in
data, including linear and nonlinear relations. Thus the proposal is to treat
continuous variables as categorical variables with many categories per variable
and use the formula for categorical data for assessment of total information.
One aspect of the lower bound of the measure for categorical variables needs to
be explained. The lower bound is attained when all variables are perfectly
correlated. Then if variables j with m, categories and variable k with m, catego-
ries are perfectly correlated and if m; < m,, then there exist at most m; distinct
weights. Otherwise, the correlation of 1 cannot be obtained. Hence we arrive at
the above lower bound.

The traditional definition of total information in multivariate data is the
sum of eigenvalues of the variance-covariance matrix, which is known to be the
sum of variances of individual variables. It is obvious that this definition is
based on the extraordinary assumption that all variables are mutually inde-
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pendent of one another. In the current study we redefined the information in
terms of the sum of the squared item-component correlation coefficients and
then adjusted the measure with respect to covariances. This idea can be inter-
preted as defining the total information in terms of the volume of a polyhedron
created by the dataset.

In applying the new measure, it is important to consider how many com-
ponents we should use and how high the higher-order correlation coefficients
we should use, for the formula will be too demanding when the number of
variables increases.

The current study will be continued to the next stage in which the new
measure will be reformulated in terms of set theory and information theory, as
well as being extended to the case of continuous variables with both linear and
nonlinear inter-variable relations. For this last problem we must develop a
practical method for discretizing continuous variables.
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