The Alberta Journal of Educational Research Vol. XLV, No. 4, Winter 1999, 392-408

Carl Frederiksen

and

Janet Donin
McGill University

Cognitive Assessment in Coached
Learning Environments

An approach to cognitive assessment of problem-solving in complex computer-based tutorial
environments is described. The approach is based on studies of expert tutoring and students’
performance in natural tutoring situations in specific domains such as engineering and
statistics. A model of expert tutors’ knowledge in a domain of applied statistics was developed
and used as a basis for a web-based computer coach that emulates human tutoring. Cognitive
assessments are obtained from records of students’ actions as they learn to apply particular
components of the procedural knowledge required to solve problems in the domain with the
help of the computer tutor. Learning is evaluated by studying changes in these records of
performance as students practice successive problem exercises. These assessments can then be
used subsequently to predict students’ unassisted performance in solving post-instruction
transfer problems.

Cet article décrit une approche a I'évaluation cognitive de résolution de problemes dans un
contexte complexe de tutorat assisté par ordinateurs. L'approche est fondée sur des études de
tutorat par des experts et le rendement d’apprenants dans des situations naturelles de tutorat
pour des domaines précis tels le génie et les statistiques. On a développé un modéle des
connaissances d’experts-tuteurs en statistiques appliquées qui a servi comme base pour un
tuteur informatique qui imite, sur le Web, les tuteurs humains. On obtient des évaluations
cognitives a partir du record des démarches entreprises par les apprenants qui assimilent des
éléments des connaissances procédurales requises dans la résolution de problemes a I'aide du
tuteur informatique. L'apprentissage est évalué en étudiant les changements dans la perfor-
mance des apprenants alors qu’ils tentent la résolution de problemes successifs. Ces évalua-
tions peuvent ensuite servir dans la prédiction du rendement post-instructif des apprenants
qui résoudront des problemes de transfert sans aide.

There is a growing interest among educators in problem-based, collaborative,
and apprenticeship approaches to instruction. This has been accompanied by
an increased interest on the part of cognitive psychologists in how to model
such complex instructional situations and the learning processes that occur in
them. Interest in coached, collaborative, and problem-oriented modes of in-
struction has led to a cognitive apprenticeship model (Collins, Brown, & New-
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man, 1989). This model has provided a rationale for reconceptualizing how
students learn and how computers may be used to support these modes of
learning. Computer-based learning environments currently are being designed
to supplement and enhance natural problem-based learning situations by
providing tools and coaching support for learners that are designed explicitly
to support these kinds of learning (Derry & Lajoie, 1993). The challenge is to
design tools that can support students’ individual and collaborative develop-
ment of complex, real-world knowledge and skill in authentic domains of
knowledge and contexts of problem-solving.

As cognitive models of learning have expanded in their capacity to address
complex, real-world cognition, there has been a growing recognition of the
need for assessments of students’ cognitive processes, learning, knowledge,
and skill development that are more appropriate to these natural situations of
coached, collaborative, and problem-based learning than are standard assess-
ments of ability or achievement (Snow & Lohman, 1993). This recognition has
been apparent in calls for alternative approaches to assessment (reviewed by
Birenbaum, 1995). Among the characteristics that have been advocated for
alternative assessment are: (a) assessment should be integrated with instruc-
tion; (b) it should be transparent, that is, it should help students learn to
monitor, self-evaluate, and reflect on their own performance; (c) assessment
tasks should be authentic, extended over time, meaningful, and challenging;
(d) students should have access to tools, resources, and coaching support
during assessment of their performance and learning; (e) assessment should be
diagnostic, providing information about students’ knowledge, cognitive
processes, misconceptions, and errors during performance of problem-solving
tasks; (f) students’ knowledge and their ability to apply (transfer) their know-
ledge to new or novel problems should be assessed; and (g) ability to col-
laborate effectively with others in solving problems should be assessed. These
characteristics of alternative assessment address limitations of traditional test-
ing approaches and promote more authentic assessments of knowledge, learn-
ing, cognitive processing, and problem-solving skill in complex natural
domains and contexts of task-oriented action (e.g., in higher education). How-
ever, experience with alternative assessment has raised concerns about issues
of objectivity, reliability, and validity of such assessments, particularly when
the situation is “high stakes” for the students being assessed. Finding objective
ways to achieve more authentic cognitive assessments represents one of the
great challenges for the field of measurement and evaluation.

The need for cognitively valid assessments has been recognized by re-
searchers in the measurement community who are attempting to develop
measurement models and tests that can better assess cognitive processes and
knowledge structures (Frederiksen, Mislevy, & Bejar, 1993). This problem can
be seen from both a cognitive perspective and a measurement perspective.
From the cognitive perspective the problem is how can we use observations of
students’ performance in problem-based instructional environments (such as
tutoring and coached instruction) to provide diagnostic information about
their cognitive processes as they acquire knowledge and effective problem-
solving skills through coached practice in solving problems in a domain? From
the measurement perspective the problem is how can measurement models
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and techniques be used to provide cognitive assessments of skill and know-
ledge acquisition that go beyond the performance of specific tasks and permit
generalizations and prediction of performance on other tasks in a domain.

Work has already begun on the first problem (Frederiksen, Glaser, Lesgold,
& Shafto, 1990; Snow & Lohman, 1993), and some of this work has given high
priority to the authenticity of the tasks and learning environments in which
diagnostic assessment is carried out (Lesgold, Lajoie, Logan, & Eggan, 1990).
Work on the second problem has typically required the construction of tasks or
items that are representative samples of tasks in a domain, and the application
of measurement models such as item response theory (IRT) to construct statis-
tical models that are capable of estimating an examinee’s level on a latent
ability scale (or classification into a nominal or ordinal category) that pertains
to the domain of tasks being sampled. Attempts are being made to construct
items and IRT models that can permit some degree of cognitive assessment
(Mislevy, 1993). For example, Embretson (1993) has constructed IRT models for
spatial rotation tasks that decompose these tasks into subskill components.

This article is concerned with both problems. Our research initially focused
on the first problem: diagnostic assessment of students” performance as they
learn to solve complex problems with the help of a tutor. Currently it is
addressing the second problem by applying a dynamic assessment approach
that makes use of performance data that are gathered as individuals practice
solving problems with the support of a coach or tutor. Measurements can be
derived from such performance data, and these may be used to predict unas-
sisted performance on new transfer problems presented following instruction.
However, because psychometric generalizations typically depend on samples
of tasks (i.e., problems), the question can be posed: To what extent can we
predict performance on a criterion problem from dynamic assessment data
gathered during instruction (Campione & Brown, 1990)? If dynamic assess-
ments of growth in proficiency across a set of practice problems can predict
criterion performance on new problems, then we may be able to claim some
degree of generalizability without the need to test individuals on large samples
of problems. If an individual possesses a stable and integrated domain know-
ledge structure and skill in applying it to perform tasks effectively in a domain,
this might constitute a latent trait-like characteristic of the individual that could
be assessed and that would reliably predict performance on tasks in the do-
main. This seems to be the implicit model for assessment in many domains of
professional education.

As a first step to a dynamic and cognitive assessment of performance, we
have been studying students’ problem-solving and learning processes in
natural tutoring situations in a domain of applied statistics. The topic is analy-
sis of variance (ANOVA). We have found that it is possible to construct com-
puter-based coached-learning environments that emulate many aspects of the
interactive support coaches provide to students in these natural tutoring situa-
tions. We have implemented such a computer environment in the domain of
applied statistics (as an ANOVA Tutor) and are currently conducting studies to
assess students’ learning and problem-solving while using the tutor. The
ANOVA Tutor incorporates a model of the expert problem-solving knowledge
that was used by an experienced tutor to coach students in how to solve
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problems in the domain of analysis of variance. When used in conjunction with
practice data sets and appropriate statistical analysis software, the ANOVA
Tutor provides a well-defined, interactive, problem-based learning environ-
ment in which students’ learning and problem-solving may be assessed under
realistic conditions of coached practice and instruction.

Development of a Computer Tutor in Statistics

In a previous study of students’ learning in a face-to-face tutoring situation in
engineering, analyses were made of changes in individual students’ and the
instructor’s performance during coached practice in solving a sequence of
problems that increased in complexity (Frederiksen, Roy, & Bédard, 1999). The
changes in the tutor’s explanations and scaffolding of students’ problem-solv-
ing that were observed as a student gained knowledge and skill provided an
almost classic example of cognitive apprenticeship. On the first problem the
tutor demonstrated how to solve an example of an engineering problem (in the
domain of mechanical engineering) and explained her solution procedures to
each student as she solved the problem. Analysis of the tutor’s discourse and
problem-solving actions enabled us to develop a hierarchical model of the
structure of the problem-solving procedures that the tutor modeled for the
students. It also enabled us to model how the tutor explained the component
procedures through her dialogue with the students. On subsequent problems,
the tutor switched to a coaching role in which she asked each of the students to
try to solve a new practice problem by themselves. As a student attempted to
solve the problem, she provided guidance and help when she felt it was
needed. Analysis of the students’ problem-solving protocols and discourse
interaction with the tutor in these coaching sessions revealed a learning process
in which the students attempted to apply the component procedures to new
problem examples (with guidance from the tutor) and obtained help from the
tutor when it was needed to complete the problem. By the third problem all the
students required less help from the tutor.

The results of this study of tutoring in engineering inspired the approach
we are taking to cognitive assessment in the present research. This approach
combines dynamic assessment of learning (i.e., providing coaching support to
students with challenging problems and recording students’ growing ability to
solve problems without assistance) with diagnostic assessment of students’ prob-
lem-solving processes (based on an expert model of conceptual knowledge and
problem-solving procedures in a domain). Our approach is to develop a com-
puter coach that emulates aspects of human tutoring and assessment tech-
niques for this coaching environment that are parallel to those used to evaluate
students” learning in.the human tutoring situation. The engineering tutoring
study demonstrated how an expert model of complex procedural domain
knowledge can be constructed using knowledge-modeling and discourse-anal-
ysis tools from cognitive science to analyze the discourse and problem-solving
actions of the tutor as she demonstrated and explained the problem-solving
procedure. The next step was to apply these methods to analyze tutoring in the
new domain (ANOVA as taught to doctoral students in educational and coun-
seling psychology) and develop a computer coach based on an analysis of
expert tutoring in the domain.
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To construct the computer coach we used a program we developed called
Tutor Builder to construct a database of tutoring knowledge from our analysis of
the tutor’s demonstrations and explanations of how to solve data-analysis
problems in statistics. This database consists of a hierarchical data structure
containing a large number of HTML files that contain information about com-
ponent procedures (similar to that provided by the human tutor). While stu-
dents run a statistics program (e.g., SYSTAT) to analyze a practice data set on
their computers, they can run the ANOVA Tutor program concurrently on a
remote server using a web browser. The students can use the browser to view
and interact with a hierarchical guide to the organization of problem-solving
actions. They can also view multimedia messages explaining particular steps in
solving data analysis problems. In this way students can use the tutor to obtain
instruction and coaching support as they practice solving data analysis
problems on their computer. The computer tutor and statistics software togeth-
er provide a well-defined, coached, problem-based learning environment in
statistics.

Description of the Statistics Tutoring Situations

We have been studying several types of tutoring situations in statistics. These
include: (a) face-to-face tutoring of individual students (in which the tutor and
student shared the use of statistical software and the tutor used the software
and prepared data files to demonstrate and explain how to use ANOVA to
solve data analysis problems); and (b) networked one-on-one tutoring (in
which the tutor introduced a student to ANOVA in the same manner as in the
face-to-face condition, but communicating by means of videoconferencing
software). In both of these situations doctoral students’ in educational and
counseling psychology shared the use of statistical software (SYSTAT) as they
learned to use ANOVA to solve a series of problems consisting of data sets to
be analyzed. A stack of “blackboard” representations (e.g., graphics, equations,
tabular, and other displays) were provided as resources for the students as they
were tutored by an experienced faculty member in ANOVA theory and meth-
ods, and in how to use SYSTAT as a tool for data analysis.

By studying tutoring in situations in which communication with the tutor
was either face-to-face or by means of videoconferencing, we were attempting
to bridge the gap between authentic cognitive apprenticeship situations (e.g.,
face-to-face tutoring) and computer environments that simulate the conditions
of natural expert tutoring. Our results indicated that networked tutoring is
similar to face-to-face tutoring and that the same models of expert knowledge
and tutoring skill apply across all these situations. The next step is to see if a
computer coach can be introduced to emulate coaching and explanation func-
tions of a human tutor and to analyze students’ learning (individual and
collaborative) in these environments. Computer coaches designed in this way
can offer many of the benefits of human tutoring. They can be used over a
network. Moreover, they could be well suited for use in university courses as a
complement to the activities of instructors. In the present context we are
interested in the potential use of these environments for cognitive assessment

purposes.
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Modeling Expert Knowledge: The Development of an ANOV A Procedure Frame

As in the previous study of tutoring in engineering, an expert model of proce-
dural knowledge in the domain of analysis of variance was developed. This
model was developed initially from a procedure frame and semantic analysis
(Frederiksen, 1986) of tutorial dialogue between an experienced tutor and a
novice student in a context of tutor demonstration and explanation of analysis
of variance. This discourse occurred over three tutoring sessions in which the
tutor modeled problem-solving procedures and provided a conceptual ex-
planation of one- and two-way analysis of variance for a single novice student.
Subsequently, data from the tutoring of other students were used to improve
the model. The discourse and protocol analysis led to a relatively complete and
detailed “expert model” of analysis of variance procedures.! This model is
displayed in Figure 1.

The procedure frame represents a complex procedure by decomposing it
into a hierarchy of actions and goals. At the top level, solving a data analysis
problem involves six component procedures (or tasks): (a) defining the re-
search problem, (b) specifying the data, (c) carrying out a descriptive analysis
of the data, (d) performing an ANOVA with the data, (e) conducting any
post-hoc analysis, and (f) drawing conclusions based on the results obtained
from previous steps. Each of these main procedures is composed of sub-
procedures. For example, procedure (d), performing the ANOVA, is composed
of eight main subprocedures to be performed: (a) specifying the research
design, (b) specifying a linear model for scores on the dependent variable, (c)
obtaining least squares estimates of the grand mean and all effects in the linear
model, (d) partitioning the total sum of squares according to the ANOVA
model, (e) preparing an ANOVA table for organizing results, (f) computing
ANOVA statistics, and (g) conducting F tests. An additional procedure of
conducting preplanned tests of contrasts is optional.?

The tutor’s coverage of the analysis of variance procedure was impressive
for its consistency, completeness, and explicitness. The only major topics not
covered by the tutor were (a) the procedures for testing assumptions in
ANOVA (procedure node 124 in Figure 1a), and (b) procedures for preplanned
tests of contrasts (procedure node 148 in Figure 1b). Concepts and theory were
included in the form of embedded explanations of conceptual knowledge and
reasoning underlying procedures used in the analysis. The tutor’s discourse
provided detailed explanations of the relevant statistical theory and concepts,
related this conceptual knowledge to appropriate steps in the procedure, and
modeled statistical reasoning associated with applying this knowledge. The
tutor’s descriptions of procedures included the same kinds of information
about procedures as were found for the engineering tutor. These included:
Goals (to be attained for a current procedure); Actions (to be performed); Results
(obtained from enacting the procedure); Explanations (several types); and Tools
(software or other tools used to carry out a procedure and descriptions of how
to use them). Explanations included: Representations (formulas, equations,
tables, graphs); Concepts (statistical concepts such as mean square, F ratio, null
hypothesis); Theory (statistical theory underlying a procedure); Procedure (the
rationale for a step in the procedure); Results (explaining the meaning of

399



C. Frederiksen and |. Donin

results); and Pragmatic Explanations (practical information about contexts in
which a procedure is applied).

What was particularly striking about the statistics tutoring situation as an
example of cognitive apprenticeship was that this wealth of information about
how to solve data analysis problems was embedded in contexts in which it was
being used to understand problems and apply appropriate methods to solve
them. Our research demonstrated that it was possible to apply cognitive
modeling and discourse analysis techniques successfully in this large and
complex domain and that these techniques could be used to construct a
detailed model of problem-solving knowledge in the ANOVA domain. This
model could be used to develop a database of tutoring knowledge for a com-
puter tutor.

Assessment of Students’ Learning

To assess students’ learning from their experiences in the statistics tutoring
sessions, the students participated in a third problem-solving session following
the second tutoring session. This session was designed to resemble an in-
dividual coaching session, but the coach (a graduate student research assistant)
provided only minimal assistance to the students. The students worked in the
same environment, but were given a new data set to analyze. The coach guided
each student individually through the analysis by means of a series of ques-
tions that corresponded to higher-level nodes in the procedure frame. If the
student was unable to answer a question, a clarification of the question was
provided, but no other form of assistance (e.g., hints, instructions, or an actual
demonstration of that step in the analysis) was provided.

The mapping of assessment questions onto the procedure frame is given by
the numbered boxes enclosing nodes in Figure 1. Questions are numbered
consecutively within topics: Topic 1 covered the research problem and data.
Topic 2 covered the descriptive analysis. Topic 3 included questions about the
ANOVA itself. Topic 4 comprised questions related to the conclusions. The
sequence of questions mapped onto the frame gives a trace analysis of how the
“coach” guided the student through the procedures. An assessment of one
student is indicated in the frame. Boldface node labels are used to mark proce-
dures that were successfully executed by the student; underlined boldface
nodes identify steps in the procedure for which the student made errors or
displayed misconceptions. All other nodes that were the subject of questions
(i.e., those enclosed in boxes) are components of the procedure that the student
was unable to execute. This figure illustrates how a trace analysis (in an assess-
ment or coaching situation) can identify procedures that have been learned, the
location of misconceptions and errors, and procedures that the a student can-
not execute without coaching support. Such an assessment keeps track of the
extent and kinds of coaching support that a student may need for particular
nodes (i.e., procedures) that have not yet been mastered.

The expert procedure frame provides a network model of the procedural
knowledge that is communicated to the student and that is needed to under-
stand and solve problems in the domain, and the trace analysis reveals how the
tutoring session was organized to guide the students’ problem-solving.® If a
computer coach could be developed to provide guidance and coaching support
for students’ problem-solving that are similar to that of a human coach, it ought
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to be possible to adopt a similar approach to diagnostic assessment in the
computer environment. In coaching, the trace analysis is primarily a record of
the sequence in which the student applied specific procedures to solve the
problem. Thus it provides an assessment of the student’s ability to apply the
procedures systematically to solve a particular problem. Our ANOVA tutor is
designed to emulate the tutor’s guidance (by means of a map of the hierarchical
procedure frame) and the tutor’s explanations of component tasks (by means of
buttons providing access to different kinds of information about the proce-
dure).

Tutor Builder: Constructing a Database of Tutoring Knowledge

The Tutor Builder software is currently being used to develop a database of
tutoring knowledge that is structured according to the expert procedure frame
that was constructed in our study of tutoring in statistics. The database is
organized in terms of the procedure hierarchy, and associated with each node
(i.e., component procedure) there are semantic fields that contain text and
graphic information about the procedure. (This information is based on seman-
tic information that was expressed by the tutor through his contributions to the
tutorial dialogue.) Semantic fields provide two kinds of assistance to the stu-
dent: Instruction and Coaching Assistance. Instruction provides several kinds
of semantic description of component procedures: Goal Descriptions, Problem
State Descriptions, Action Descriptions, Tool Instructions, Theory Explana-
tions, Conditions (necessary for carrying out the step in the procedure), and
Result Descriptions. Coaching Assistance is provided in the form of Questions,
Clarifications, and Hints. As an example, consider the Tutor Window
presented in Figure 2. The panel at the lower left of the Window provides the
student with a “Procedure Map” of the hierarchical structure of the procedure
(like a site map on the internet). The student can select any node (i.e., com-
ponent procedure) from the map, and then “request” coaching assistance or
instruction pertaining to the selected procedure by selecting a type of assis-
tance (from the panel immediately above the Procedure Map). For example,
types of instruction include a statement of the Goal of carrying outan ANOVA,
a description of the kinds of Results obtained from doing an ANOVA, or a
general introduction to the relevant Theory. Coaching is provided at several
different levels and the student can select the level of assistance he or she
desires: Questions, Clarifications, or Hints (there are up to three levels of hints
available). Once a type of instruction or coaching assistance has been selected,
the tutor displays the relevant text or graphic information in the right panel of
the window. The buttons in this panel provide access to other types of instruc-
tion or levels of coaching. It is possible to provide graphics, sound (and even
movie clips) to accompany these windows. Glossary items are highlighted in
the presented text, and an alphabetized listing of all glossary items is always
available by means of a pop-up selection window.

An enhanced version of the tutor (which is under development) will in-
clude facilities for students to (a) submit their work and (b) perform a guided
self-evaluation by comparing their work with the “tutor’s results.” After stu-
dents have completed a step (at any level in the hierarchy), they will be able to
submit their work (in the form of a text file), and ask to view the tutor’s results
at this step. This opens a Result Window containing two kinds of problem-
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Figure 2. The ANOVA Tutor environment: Screen shot of the computer desktop with the
ANOVA Tutor running (in a browser window) and with Data Editor and Analysis Windows
displayed by concurrently running the statistics application SYSTAT.

specific information: first, a correct result corresponding to that step in the
procedure for the problem, and second, a checklist of items required in a
successful result and a list of common errors. Students will be able to compare
their solutions at that step with the correct result and check those features that
are present in their solutions. A student will be guided to relevant instruction
based on this self-evaluation. This feature is designed to develop skill in self-
monitoring and evaluation of problem-solving steps.

As shown in Figure 2, the computer coach is run concurrently with the
statistical analysis software. The student is presented with a prepared data set
and a description of the data, how the data were obtained, and the purposes of
the study. The problem-solving task involves planning and executing a com-
plete analysis using the statistical software, and submitting a report containing
results obtained at each step (the report is organized as the sequence of student
responses to tutor-supplied questions). The student will be able to cut and
paste information from any tutoring window, or from the statistical environ-
ment (e.g., results from the output window) into the template, and enter
information using text editing functions. This environment closely parallels
natural problem-based classroom and tutoring situations. The students work
on problem exercises while using the tutor. The goal is to learn to produce
correct analyses independently and produce accurate and complete reports by
practicing these exercises (with the help of the tutor).
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Cognitive Assessment in the Coached Learning Environment

This computer coach provides an interesting environment for cognitive assess-
ment that is authentic in the sense that it has been designed to reflect charac-
teristics of expert tutoring and problem-solving in the domain. The
authenticity of the environment can be verified by comparing it with various
conditions of face-to-face and networked tutoring. If students’ learning proces-
ses are found to be similar across these situations, the computer tutor could be
considered to have a high degree of authenticity. A review of the characteristics
often recommended by advocates of alternative approaches to assessment
reveals that many of these are met, and so there is a reasonable likelihood that
our coached learning environment is at least a candidate for achieving a con-
trolled environment for cognitive assessment. In the remainder of this article
we briefly examine the types of “responses” that are obtained from the stu-
dents in this environment, how they can provide information related to the
goals of cognitive assessment, and finally the types of statistical measurement
models that appear to be needed. A thorough analysis and development of
appropriate measurement models is a large task that remains to be done.

Briefly, our assessment goals are: (a) dynamic assessment of students’ profi-
ciency in problem-solving and the extent and quality of their domain know-
ledge; (b) diagnostic assessment of students’ problem-solving: identify correct
application of component procedures, location and kinds of errors, types and
levels of coaching required, and pattern of application of procedures; (c) assess-
ment of student learning: identify changes over practice problems; (d) predic-
tion of unassisted performance on “transfer” problems; and (e) extension of
assessment to collaborative learning. Our task is to specify how measures or
indicators relevant to these goals can be obtained from the responses of stu-
dents while working on practice problems in the coached learning environ-
ment. The responses students can make for each “item” (i.e., component
procedure) are identified in Figure 3.

At any location (i.e., node corresponding to a component procedure) in the
procedure hierarchy, several kinds of student response can occur. Successful
completion of the subtask corresponding to a superordinate node requires
successful execution of all subordinate tasks plus completion of a superor-
dinate integrative task. For example, writing the model equation involves
writing expressions for all the components of the equation plus arranging them
into a single equation. For any node three types of information are recorded: (a)
the student’s self evaluation of his or her solution at that step in the procedure,
(b) the level of coaching assistance used by the student to produce a correct
solution at this step, and (c) the type of instructional assistance the student
obtained from the tutor. (Note that the evaluation of a student’s independent
work could be done by the instructor using the tutor to “score” the student’s
work.) Response categories for the first two of these would be considered to be
ordered: evaluations range from item correct to item failed (errors only) or not
attempted, and levels of assistance range from no assistance, to questions
designed to elicit appropriate knowledge, to hints that provide partial know-
ledge, to full instructions (each of these could have corresponding levels of
detail). Response categories corresponding to types of assistance are not ex-
pected to be ordered; rather, they reflect students’ preferences for different
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types of information about procedures. The question we need to address is
how can we use these responses to obtain information relevant to our assess-
ment goals.

Domain Knowledge and Problem-solving Proficiency

Knowledge and proficiency are associated with major components (high-level
components) of the problem-solving procedures. The high-level components
for statistical design and data analysis problems include topics such as (a)
specifying the research design, (b) specifying the sampling plan, (c) specifying
and testing distribution assumptions for the data, (d) preparing the data for
analysis, (e) carrying out descriptive analysis of the data, and (f) carrying out
the analysis of variance. In each of these high-level components, subcom-
ponent procedures are specified. For example, the subcomponents of (f) the
analysis of variance are: (a) specifying the appropriate ANOVA design, (b)
writing the linear score model, (c) obtaining estimates of parameters in the
model, (d) partitioning the sum of squares, (e) computing ANOVA statistics, (f)
conducting significance tests, (g) constructing the ANOVA table, and (h) carry-
ing out tests of preplanned contrasts. Because each of these decomposes hierar-
chically into components, proficiency is associated with successful execution of
the components and integration of components at each level into a solution of
the more general problem.

Two kinds of measurement models might be considered: hierarchical
models that explicitly incorporate the hierarchy into the measurement model
(Embretson, 1993; Gitomer & Rock, 1993) and latent trait models that scale items
(corresponding to the procedure components) on a single dimension or profi-
ciency scale. A complicating factor is that measurement based on these items
may be based on ordered categories of response (levels of correctness or assis-
tance), suggesting some kind of partial-credit model (Masters, 1982; Masters &
Mislevy, 1993) or assignment to purely categorical latent classes (e.g., based on
categories corresponding to types of assistance, Yamamoto & Gitomer, 1993).
Test theory models of this kind may be applicable to response measures ob-
tained in the coached learning environments, and would justify assessments at
the level of the “large” procedure components that are involved in data analy-
sis using ANOVA models and methods. The function of such assessments
would be to certify that a student had reached a particular level of proficiency
and knowledge with respect to a given component procedure.

Diagnostic Assessment of Component Knowledge and Problem-solving Procedures

Diagnostic assessment makes a less stringent demand on statistical measure-
ment models if the primary goal is to provide the student or instructor with
diagnostic information about where the student is having difficulty and what
kinds of knowledge are lacking. Such information is provided by the trace of
student responses using the tutor and evaluations of the students’” work.
Reliability of such diagnostic assessments is less of a concern, but consistency
of errors in component tasks or need for assistance would indicate real
misunderstandings or lack of knowledge. Properties of individual items (com-
ponents) resulting from item analyses performed to construct proficiency
measures would provide evidence of how significant difficulties at the level of
specific items are as contributors to proficiency on major task components. In
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addition to diagnosing where difficulties occur, diagnostic assessment would
include trace analysis of particular patterns and sequences in a student’s ap-
plication of procedures. It may be possible to establish expert-like patterns and
novice patterns to use as a basis for interpreting students’ sequence of problem-
solving operations (Lesgold et al., 1990). Finally, the quality of student concep-
tual understanding and explanations might be assessed at various steps in
problem-solving to evaluate students’ knowledge. This could be done through
reports, questions, or other tasks designed explicitly to obtain such information
from the students.

Assessment of Change with Practice

The assessment of change can occur both at the level of domain knowledge and
proficiency and at the level of individual component procedures and the se-
quence in which they are applied (diagnostic level). The principal question is to
what extent is a student’s performance gradually approximating that of an
expert? Answering this question will involve interesting analyses of changes in
the traces of students’ responses while using the tutors. In addition to the
pattern of performance finally attained, changes in students’ performance over
problem exercises provides information about how an individual progresses
and any learning difficulties that may have occurred. Such data may be valu-
able in helping students develop effective learning strategies for complex do-
mains such as statistics.

Prediction of Performance on Criterion Problem-Solving Tasks

A straightforward approach to prediction of performance would be to assess
proficiency with main component procedures while using the tutor when
solving practice problems. Of particular interest would be the level of profi-
ciency attained for each procedure and the difficulty level of the practice
problems attempted. The same assessment criteria could be applied to a post-
practice near-transfer assessment problem, and then the tutor performance
could be used to predict final performance. If tutor performance turns out to be
a good predictor of performance on the criterion problems, then the use of a
coached-learning environment for assessment might be recommended. In ad-
dition, a close analysis of students for whom predictions are poorest might
provide interesting information about factors responsible for difficulty in
making the transition from assisted performance to independent competence
in a domain. This issue corresponds to one of the principal arguments for a
cognitive apprenticeship approach in which assistance provided by a coach is
gradually reduced to enable students to develop autonomous skill in a domain.

Extension to Collaborative Learning Situations

Coached learning environments can be used effectively by pairs of students or
small groups of students, with the added benefits of motivation and develop-
ment of skill in collaborative problem-solving. As an environment for cognitive
assessment, the trace of students using the environment would reflect the
knowledge of each and their joint problem-solving behavior. When used this
way, it would seem essential that students also attempt problems individually
(also with the help of the tutor) and that they be assessed independently in
order to develop independent competence and knowledge in the domain. Data
obtained in such studies would bear on many of the learning issues underlying
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collaborative approaches to instruction, especially on the relationship between
collaborative competence and individual competence and knowledge in a
domain.

In summary, coached learning environments of the type we describe in this
article appear to offer potential as environments for assessment. As assessment
environments they can provide objective and cognitively valid indicators of
performance. Measurement models can be developed for students’ responses
in these environments to enable assessment of gains in knowledge and profi-
ciency, and these can be validated as predictors of performance on criterion
problem-solving tasks. Moreover, the performance measures themselves can
be used to provide instructors (and students) with diagnostic information
about students’ understanding and problem-solving, including their errors
and misconceptions. In addition, coached-learning environments can provide
a high degree of authenticity as natural environments for collaborative and
problem-based learning. As such they should provide valuable contexts for
coached practice in problem-solving that can extend and supplement class-
room instruction. If future research can show that this approach to assessment
can be implemented in conjunction with appropriate cognitive and measure-
ment models to create reliable assessments with high predictive validity, then
it may offer one solution to the problem of assessment that is objective, authen-
tic, and cognitively valid.

Notes

1. The analysis of the tutorial discourse was carried out using a computer-aided analysis tool
(NU.DIST) to build the frame. The complete analysis of tutorial dialogue that led to the
development of the procedure frame is stored in a NU«DIST database. This database
documents how each text unit (and associated actions) in the tutorial dialogue was matched
to procedures in the expert model.

2. Note that Figures 1a and 1b do not include all of the branching procedures: branching
subprocedures are collapsed into lists in the figures and if they are followed by arrows, they
branch further.

3. Incoached tutoring sessions (such as those analyzed in our engineering tutoring study), the
tutor and student participated more equally in the dialogue with the tutor occasionally
guiding the student to the next high-level procedure, but with the student initiating most
procedures and related dialogue exchanges.
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